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ABSTRACT 

This thesis is designed to act as an instructor's supplement for refresher matrix 

algebra courses at the Naval Postgraduate School (NPS). The need for a beginning 

matrix algebra supplement is driven by the unique circumstances of most NPS stu- 

dents. Most military students attend NPS several years after receiving their under- 

graduate degrees. This supplement, unlike most college textbooks, bridges the gap 

between the student's educational lay-off and the rigors of mathematically oriented 

degrees such as applied math, operations research and engineering. By reviewing 

the fundamental concepts of vectors and matrices, and performing basic operations 

with them, the student quickly develops the background needed in NPS's demanding 

curriculums. This supplement focuses on matrix and vector operations, linear trans- 

formations, systems of linear equations, and computational techniques for solving 

systems of linear equations. The goal is to enhance current matrix algebra textbooks 

and help the beginning student build a foundation for higher level engineering and 

mathematics based courses. 
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INTRODUCTION TO MATRIX ALGEBRA 

Matrix algebra is the study of algebraic operations on matrices and of their 

applications, primarily for solving systems of linear equations. Systems of linear 

equations appear often in fields that utilize mathematics to solve real-world prob- 

lems. Although most of these real-world problems are so large that they would prove 

to be too difficult and time consuming to solve by hand, it is extremely important to 

understand the concepts underlying their solution. Once the techniques for solving 

small systems are understood, the methods can be applied to writing computer algo- 

rithms used to solve much larger systems. The purpose of this supplement therefore, 

is to develop the student's fundamental skills of matrix algebra problem solving at a 

very basic level. Where most matrix or linear algebra books concentrate on why, this 

supplement concentrates on how. That is, the computational aspect of matrix alge- 

bra is stressed instead of the derivation of the concept. Besides algebraic operations 

on matrices, we also discuss linear transformations. The focus of the supplement 

however, is to develop the skills necessary to solve systems of linear equations using 

several different methods. Whenever possible, examples using both real and complex 

numbers are used to get the student ready for the types of problems he or she is likely 

to encounter in follow on classes. Each chapter concludes with exercises designed to 

develop the students skills in the material just covered. The solutions can be found 

in Chapter Five. Students desiring a deeper understanding of matrix algebra will 

benefit greatly from the references used in writing this supplement. 

Chapter One of the supplement deals with matrix notation and operations. 

The student learns how the elements of a matrix are arranged and the difference 

between square and rectangular matrices. We then introduce the basic algebraic 

operations for matrices: transpose, conjugate transpose, addition, subtraction, scalar 

multiplication, and matrix multiplication. 

Chapter Two of the supplement is about vector operations and their geomet- 



ric representations. The student learns that a vector can be regarded as a matrix 

consisting of either one row or one column. Therefore, the matrix operations of 

transpose, addition, and subtraction apply to vectors as well. Then we move on to 

vector multiplication. Since a vector can be thought of as a matrix, and we know 

how to multiply matrices, we can surely multiply a matrix times a vector. This intro- 

duces the matrix equation. The student then learns that there are two cases of vector 

multiplication-column x row and row x column. The dot product is introduced as 

a means of formally defining the inner-product. We then use the inner-product to 

generalize terms associated in two or three dimensions, such as length of a vector and 

the angle between two vectors. Using the inner-product, the student also learns how 

to project one vector onto another and determine if two vectors are orthogonal. The 

use of the inner-product allows us to deal with both real and complex vectors. We 

close the chapter by showing how a vector can be written as a linear combination of 

other vectors. 

In Chapter Three, the student learns about linear transformations and how 

certain structured matrices like the identity matrix or permutation matrix can trans- 

form one vector into another vector. We then discuss matrix norms. Next, we move 

on to range and null space of a matrix. We finish up the chapter discussing a special 

type of matrix known as the elementary matrix. Elementary matrices are used to 

develop methods for solving systems of linear equations in the next chapter. 

Chapter Four covers systems of linear equations and their solution. Here we 

define what is meant by a linear equation and by a system of linear equations and 

demonstrate several techniques used to solve them. The first three techniques are the 

method of substitution, Gaussian elimination, and Gauss-Jordan elimination. We 

also show the student how to find the inverse of a matrix. Because of their special 

form, triangular matrices are then studied as a lead in to our last solution method, 

the LU decomposition. We show two methods of finding the LU decomposition. We 

finish the chapter by looking at pivoting as it applies to computational efficiency. 



This is a very important concept when systems are solved by computers. 

This supplement is a compilation of several different works. Lecture notes 

from both advisors, a similar matrix algebra thesis, basic linear and matrix algebra 

books, and the authors first hand experiences of what topics at NPS seemed to need 

a bit more refresher attention. 

The study of matrix algebra goes far beyond what has been presented in this 

supplement. The manual is designed to give students from varying backgrounds the 

necessary tools of matrix algebra needed to succeed in follow-on courses being taught 

at NPS. 
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PREFACE 

The writing of this supplement is driven by the need for a manual to ac- 

company current introductory matrix algebra textbooks. It is designed to provide 

additional examples and to clarify difficult concepts which are presented in the text. 

Students using this supplement are assumed to have varied educational backgrounds 

with different levels of knowledge, although it expected that all students have a basic 

facility with algebra. 

This supplement is organized using the following format: We first discuss a 

concept, then formally define the concept, and then provide examples showing its use. 

Whenever applicable, examples using both real and complex numbers are used. At 

the end of each chapter there are exercises to reinforce the ideas that were covered in 

the chapter. The solutions to these exercises can be found in Chapter 5. 

Chapter 1 introduces matrix notation and basic matrix operations. These 

operations are performed using both real and complex matrices. In Chapter 2 we 

talk about vector notation and operations, linear combinations, linear independence, 

and spanning sets. Chapter 3 is on linear transformations, including several specific 

examples such as the elementary matrices. Chapter 4 focuses on methods for solving 

systems of linear equations, these include substitution, Gaussian and Gauss-Jordan 

elimination, matrix inversion, and the LU decomposition. 
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I. MATRIX OPERATIONS 

We start by thinking of a matrix as a rectangular table of elements. A matrix 

composed of n rows and m columns is an element of 7ZnXm if all of its elements are 

real numbers, and is an element of CnXm if any of its elements are complex numbers. 

The complex set is one that we will deal with quite frequently, since /R,nXm c CnXm. 

Upper case, Roman letters will be used to denote matrices. It is often useful to refer 

to a particular element in a matrix by its row and column position; the element in 

the ith row and jth column of a matrix A will be denoted by a,ij or A;J. 

Example 1.1 A = 

columns. 

°1,1     al,2     •     «Im 

«2,1 € CnXm is a matrix with n rows and m 

Example 1.2 Given A = 
1 -i   -4 
8 2i      0 
2 2-3i      4 

occupying the 3rd row and 2nd column position 

€ C3x3, a3)2 = 2 — 3i and is the element 

A rectangular matrix that has an equal number of rows and columns, like the matrix 

A in the previous example, is called a square matrix. 

A.     MATRIX TRANSPOSE 

One of the most useful operations that is performed on matrices is transposi- 

tion. This operation turns the rows into columns and the columns into rows. 

Definition LI The transpose of a matrix A, denoted by AT, is defined by (AT)ij = 
dji] that is, the ijth element of Ar is the jith. element of A. 

Example 1.3 Given A = 
14-60 
3   8    12   3 

compute AT. 



Solution: 

AT = 

1 3 

4 8 

-6 12 

0 3 

An operation related to transposition is the construction of the conjugate 

transpose, or Hermitian transpose. The conjugate transpose of a matrix is constructed 

by transposing the matrix and taking the complex conjugate of all the elements, or, 

equivalently, by taking the complex conjugate and then transposing. 

Definition 1.2 The Hermitian transpose or conjugate transpose of a matrix A, de- 
noted by AH, is defined by (AH)ij = ajf, or equivalently AH = A   = AT. 

Example 1.4 Given A 

Solution: 

1   3i   6 
-i    2   4 

compute AT and AH. 

AT = 

1 —i 

3i 2 

6 4 

and AH 

1    i 

Si   2 

6   4 

As this example demonstrates, the (Hermitian) transpose of an n x m matrix is an 

m xn matrix. Note that taking the (Hermitian) transpose of a matrix twice returns 

the original matrix. That is, (AT)T = A and (AH)H = A. 

Example 1.5 Given AH 

Solution: 

1    i 
Si   2 

6   4 

H\H , compute (A   ) 

(AH)H = 
1   Si   6 

-i    2   4 

which is our original A from the previous example. 



Example 1.6 Given A = 
1 
0 

0   6 
2   4 

, compute AT and A 

Solution: 
1   0 1   0 

AT = 0   2 and AH = 0   2 

6   4 6   4 

In the real case, the transpose and the Hermitian transpose are identical. 

B.     MATRIX ADDITION, SUBTRACTION AND SCALAR 
MULTIPLICATION 

Matrices become useful when simple, algebraic operations are utilized. When 

matrices are the same size, it is natural to add and subtract them. This is accom- 

plished by performing the operation element-by-element on corresponding pairs of 

the matrix entries. 

Definition 1.3 Given A,B € CnXm, the sum, A ± B, is computed as 

A±B = 
01,2 ± h,2 

ani ± bn\ 

0-\m ± bim 

ö2m ± &2m 

From this definition, we see that the resulting matrix is an n x m matrix, like the 

original matrices, and is an element of CnXm. Because the reals are a subset of the 

complex numbers, the definition for addition and subtraction also applies to real 

matrices. 

Example 1.7 Given A = 
1    2 
3   4 

and B = i   12 
-7    2i 

, compute A + B and A — B. 



Solution: 

A + B   = 
1 +2   2 + 12 

3-7   4 + 2i 

l+i 14 

-4   4 + 2i 
, and 

A-B   = 
1-2   2-12 1-2'      -10 

3- (-7)    4-2i 10   4-22 

If two matrices are not of the same dimensions, i.e., both from TZnXm or CnXm, 

then these operations are not defined and we say the matrices are not compatibly sized 

for addition and subtraction. 

Example 1.8 Given A 
1   2 
3   4 

and B = 
r  1 0 1 

-3 2 
6 4_ 

compute A + B. 

Solution: A+B is not defined because A and B are not compatibly sized for addition. 

Another useful operation is scalar multiplication, which is defined as follows. 

Definition 1.4 Given a matrix A e CnXm and a scalar a e C. The scalar product, 
or A, is formed by multiplying each element of A by a: 

ak 

ctaltl   crali2    •    cralm 

002,1 

Öö„l ctar, 

Example 1.9 Given a = 3 and A = 

Solution: 

1     2 
3   42 

1    2 
OJA = 3 

3   4i 
— 

, compute oA. 

3-1    3-2 

3-3   3-4i 

3      6 

9   122 



Example 1.10 Given A = 

Solution: 

1 * 

-3*' 2 
6 4 _ 

and a = — 2 + i, compute oA. 

-2 + i   —1 — 2i 

aA= 3 + 6i   -4 + 2*' 

-12 + 6*   -8 + 4* 

When dealing with real numbers it is understood that a + 0 = a. Although we may 

not recall the exact definition, 0 is the additive identity. Yet what does A + 0 equal? 

Our definition for matrix addition dictates that we can only add matrices that are 

compatibly sized. If we make 0 a matrix filled with all zeros and ensure it is the same 

size as A, we see, A + 0 = A. 

Example 1.11 Given A = 

Solution: 

-2      -3*' 
-8*   3 + 4i 

8-9i 0 
, compute A + 0. 

A + 0 = 

-2       -3i 0   0 

Si   S + 4i + 0   0 = 

8-9i           0 0   0 

Example 1.12 Given A 
8-9i   5 

-2   0 
3 + 4z    i 

-1 -Si 1 
8t 7 
6 0 

-2       Si 

Si   3 + 4« 

8 — 9i 0 

, compute A + 0. 

Solution: 

A + 0 

8 — 9*   5     -1   Si 

-2   0   -8i       7 

S + Ai    i       6       0 

+ 
0   0   0   0 

0   0   0   0 = 

0   0   0   0 

Example 1.13 Given A 
8 — 9*   5    -1   -3t 

-2   0   -8i       7 
S+U    i       6       0 

8-9*'   5    -1   -3» 

-2   0   Si       7 

3 + 4*'    i       6       0 

, compute A + 1. 



Solution: A + 1 is not defined, since A and 1 are not compatibly sized for addition. 

With the definitions of matrix addition, subtraction, and scalar multiplication, 

we can now list some important properties of matrices. 

Theorem LI  Given matrices A,B,C € CnXm, and scalars a,ß € C, the following 
properties of matrix addition, subtraction and scalar multiplication hold: 

1. A + B = B + A 

2. A + (B + C) = (A + B) + C 

3. a{k + B) = «A + aB 

4. (<x + ß)A = aA + ßA 

5. (aß)A = ß(ak) 

6. A+0= A 

7. A+(-A)=0 

Example 1.14 Given A = 
«1,1 öi,2 «1,3 
02,1 °2,2 «2,3 
03,1    ö3)2    a3,3 _ 

determine whether a (A + B) = a A + a B. 

,B 
61.1 6l,2     6l,3 

&2,1 62,2     62,3 , and a £ C, 

63,1 63,2     63,3  . 

Solution: 

a(A + B)   = 

a(altl + bltl) a (a1)2 + 61,2) ot (alß + 61,3) 

o(a2,i + 62,i) 0(02,2 + 62,2) 0(02,3 + 62,3) 

a (03,1 + 63,1)   a (°3,2 + 63,2)   o (a3)3 + 63,3) 

aa\ 

aa2 

aa3 

aai 

aa2 

aa3 

1 + 061,1   aai,2 + o6x,2   aai,3 + 061,3 

1 + a62,i    «02,2 + 0:62,2   ö;a2,3 + o62>3 

1 + o63,i     0:03,2 + o63,2     Oa3,3 + 063,3 

1 aah2 a«i,3 

1 aa2,2 0:02,3 

1    cra3,2   o:a3)3 

+ 
061,1 061,2 061,3 

062,1 0:62,2 062,3 

o63,i   a63,2   a63,3 

aA + aB. 



This example is not a formal proof. However, we can use this technique to show that 

the given properties hold, and verifications of the remaining properties are left as 

exercises. 

C.     MATRIX MULTIPLICATION 

Matrix multiplication could be defined in the element-wise manner of addition 

and subtraction, but this leads to algebraic results of limited applicability. Instead, 

we define matrix multiplication in the following manner. 

Definition 1.5 Given A G CnXp and B € Cpxm, the product AB = C is defined as 

(AB)ij = 2_, Aj-fcBfcj = Ctj. 

Example 1.15 Given A = «1,1     «1,2 

^2,1     #2,2 
compute AB. 

Solution: 

AB = 
01,1     01,2 

«2,1     «2,2 

&i,i h,2 

&2,2 

= 
a 

a 

€ C2x2 and B = &1,1     &1,2 

&2,1     &2,2 
e c 2X2 

= c. «1,1&1,1 + Ol,2&2,l     «1,1&1,2 + ^1,2^2,2 

a2,l6l,l + «2,2&2,1     02,1&1,2 + 02,2^2,2 

Here we can see that the ctyi entry is the sum of the products of the elements of the 

first row of A and the elements of the first column of B. The c1;2 entry is the sum 

of the products of the elements of the 1st row of A and the elements of the second 

column of B. The next two entries of C, c2,i and c2]2, are computed in the same 

manner. Therefore, we find the ijth element of C by finding the sum of the products 

of the elements ?th row of A and the jtb. column of B. 

Example 1.16 Given A 
1   3 

and B = 
1 -2   0 

1   2 1 6   4 
compute AB. 



Solution: 

AB = 
1-1+3-1      l(-2) + 3-6      1-0 + 3-4 

-1-1+2-1   -l(-2) + 2-6   -1-0 + 2-4 

4   16   12 

1   14     8 

Example 1.17 Given A 

AB. 

■1-i   S + 2i and B 
-2 + t 

6 
, compute 

Solution: 

AB   = (-1 - i)l + (3 + 2i)(-i)   (-1 - i)(-2 + i) + (3 + 2i)6 

l-4i   11 + 13* 

In the examples above, we found the product AB by following the simple rule of 

"finding the sum of products a row from matrix A and a column from matrix B". At 

this point, it should be fairly obvious that for the matrices to be compatible under 

this operation, the number of columns in A must equal the number of rows in B. 

These dimensions are called the inner dimensions of the matrix product. The two 

remaining dimensions are called the outer dimensions as illustrated below: 

outer 

(3 x 4)(4 x2) 

Example 1.18 Given A £ ft3*4 and B <E 1l4x2, determine whether A and B are 
compatibly sized for matrix multiplication, and if so, what are the dimensions of the 

resulting matrix? 

Solution: The inner dimensions are equal, therefore A and B are compatibly sized 

for matrix multiplication. AB G 1Z3x2, since the outer dimensions are 3x2. 

Example 1.19 Given A <E ft2*2 and B € 7l2x3, determine whether A and B are 
compatibly sized for matrix multiplication, and if so, what are the dimensions of the 
resulting matrix? 



Solution: The inner dimensions are equal, therefore A and B are compatibly sized 

for matrix multiplication. AB G 7Z2x3, since the outer dimensions are 2x3. 

Example 1.20 Given A 

Solution: 

AB 

1    i 
-Si   2 

6   4 
and B = 

1   2 
3   4 

, compute AB. 

1   i 

-3i   2 

6   4 

1   2   -i 

3   4      i 

1 + 3i      2 + 4i      -i - 1 

-3i + 6   -6i + 8    -3 + 2i 

6 + 12   12 + 16   -6i + 4i 

l+3z      2 + 4z     -1-i 

6-3»   +8 - 6i   -3 +1% 

18 28 -2t 

The key factor that determines whether the operation of matrix multiplication is 

possible is whether or not the inner dimensions of A and B are equal, or in other words, 

that the two matrices are compatibly sized for forming the product AB. However, 

this does not necessarily mean that they are compatibly sized for forming the product 

BA. In the previous example, if we tried to find the matrix product BA, we could not 

since the inner dimensions of B and A are not equal. We say that BA is not defined. 

Even if the matrices are compatibly sized, AB does not necessarily equal BA. 

Example 1.21 Given A = 

BA. 

1   3 
-1   2 

and B 
4   5 
9   0 

determine whether AB 

Solution: 

AB   = 

BA 

1-4 + 3-9      1 -5 + 3-0 

-1-4 + 2-9 -1-5 + 2-0 

4-l+5(-l) 4-3 + 5-2 

9-1 + 0(—1) 9-3 + 0-2 

31 

14 

-1   22 

9   27 

5 

-5 
and 

9 



Clearly, these two products are not equal and, therefore, matrix multiplication as we 

have defined it does not, in general, commute. 

Example 1.22 Given A £ 1Z2x4 and B € Tl4x2,AB G 7l2x2 and BA G K4x4. Here 
both AB and BA exist, but the resulting matrices do not have the same dimensions. 

Some important properties of matrix operations follow. 

Theorem 1.2 Given matrices A,B,C € CnXm, and scalars a,ß € C, the following 
properties of matrix multiplication hold, provided that the indicated operations can be 

performed: 

1. A(BC) = (AB)C 

2. A(B + C) = AB + AC 

3. (B + C)A = BA + CA 

4. a(AB) = (aA)B = (Aa)B = A(aB) = A(Ba) = (AB)a 

5. (aß)A = a(ßA) 

6. (A + B)H = AH + BH 

7. (AB)" = B"A" 

Example 1.23 Given A = 
«1,1     «1,2 «1,3 

«2,1     «2,2 «2,3 

03,1     ^3,2 «3,3 

C, determine whether (aß)A = a(ßA). 

,B 
&i,i   h,2   h,3 
&2,1     ^2,2     &2,3 

^3,1     &3,2     ^3,3 . 

, and a,ß £ 

Solution: 

(a/?)A = 

aßa1A aßaij aßa1>3 

aßa2,i aßa2,2 aßa2y3 

aßa3,!   aßa3f2   aßa3t3 

a 

ßai,i ßo.1,2 ßaiß 

ßa2,i ßa2,2 ßa2,3 

ßaz,\   ßa3i2   ßa3,3 

= a(ßA). 

This example is not a formal proof.   However, we can use this technique to verify 

that property 1.2(5) holds and verifications of the remaining properties are left as 

exercises. 

10 



D.     EXERCISES 

1. Given A = 

write 

a) A1 

3 

-6 

1 

,B 

+ 3i 2 

-6 0 

1 -i -hi 

, and C = 

b)B H c)C" 

2 - 6i      7 - 4t 2 

-6 + 4i   -h + 6i   -6 + 2i 

1        3-i 0 

2.   Given A = 

5 + i 

7 ,B = 

-2i 
write 

i) AT b)B if 

1 +i    -4 

3      -7i 

c) C H 

, and C 

2    4i 22 

-6   -5   -3 + 4i 

14 + 3i    -i 10 

3. Given A = 

3 5 

-6 ,B = -1 ,c = 
1 8 

4-2i   3-4z 

-2i 0 

i 5 

, andD 

compute 

a)A + B b)B + D c)D-C 

e) 2A - 3B        f) iDH + 2CT 

d) CH + D 

7 0 

8-4£ ■2- -3i 

l+5i 9- -6* 

4. Given A 

compute 

a) A-B 

e) A + 2B 

5 i 

9 ,B = 6 ,c = 
6 10 

4-2z   3-4t 

-2t 0 

i 5 

and D = 
i   -2 + 2i   1 

-8 Ui   0 

b)B + C 

f) T>H - iCH 

c) D" + C d) CH - D 

11 



5.   Given matrices A = 

verify theorem 1.1. 

0-1,1     01,2 

«2,1     «2,2 

B = 
&2,1     &2,2 

, and C = 
Cl,l     Ci,2 

C2,l      C2,2 

6. Given A = 

general? 

1   2   3 

4   5   6 

7   8   9 

and B 

-1 0 1 

2 0-3 

0   2      1 

show AB / BA. Is this true in 

7. Given A = 

and aG^, compute 

a) BA 

1 0       1 

2 0-3 

0   2      1 

,B 

b)BTC 

3 1 0 

0 2 4 

1 1 -2 

c)C"B 

,C = 

2 - 6i      7 - U 2 

-6 + 4i   -5 + 6i   -6 + 2£ 

1        3-i 0 

d) a(BA) e) BA + BC 

8. Given A = 

cc »mpute 

a) AB 

5   4   1 
,B = 

2   3   2 

b)BAT 

2   4 6 

1   2 3 ,c = 
1   5 -1 

1 2 + i 

-3« 3 

-2i 0 

c)C"B d) o(BC) 

and a € 71, 

e) AB + C 

9. Given A = 

rem 1.2. 

01,1     01,2 

02,1     a2,2 
,B = 

&i,i    h,2 

&2,1      ^2,2 

, and C = 
Cl,l     Ci,2 

C2,l      C2)2 

, verify theo- 
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II. VECTOR OPERATIONS 

We start by thinking of a vector as a special case of a "thin" matrix. Therefore, 

all of the rules for matrices will also hold true for vectors. A column vector is an 

element of 7lnXl. For simplicity of notation, we view column vectors as elements of 

7ln if all of the elements are real numbers, and of Cn if any of the elements are 

complex. The superscript n denotes the number of elements in the column vector. 

Lower case, bold letters such as v and w will denote vectors. Regardless of whether v 

is a row vector or a column vector, the ith element of v will be denoted by V{, where 

i denotes the position of an element in the vector. 

v2 

Definition II. 1 v 

row vector. 

Example II. 1 Given v 

is a column vector, and w =     w\   w2 wn is a 

1 
1% 
6 

, and w =    10 — 3i   —2 + i   —Si   9    , their third 

elements are v$ = 6 and w3 = —Si, respectively. 

Transposition is simply the act of making a column vector a row vector or a 

row vector a column vector. The orders of the elements are unchanged. 

Definition II.2 The transpose of v, denoted by vr, is defined by (vT),- = u^; that 
is, the ith. element of the transpose of v is the conjugate of the ith element of v. 

Example II.2 Given w = [ 12   0   -3 J, and v = 

Solution: 

12 

wT =        0      and vT = 

1 
2 
6 

, compute wT and vT. 

12 

0 

-3 

1   2   6 

13 



Definition II.3 The conjugate transpose of v, denoted by vH, is defined by (vH); = 
vf, that is, the ith. element of the conjugate transpose of v is the conjugate of the ith 
element of v. 

Example II.3 Given v 

Solution: 

1 
2i 
6 

, compute v^ and (vH) 

rH 1    -2i   6 and  (vff) 
H 

1 

2i 

6 

Notice that transposing a vector twice returns the original vector. This means that 

(vT)T = v and (vH)H = v. Unless otherwise noted, all vectors should be interpreted 

to be column vectors. A row vector will be written as the transpose of a column 

vector. In the next few examples, remember to think of vectors as skinny matrices. 

Example II.4 Given v 
v + w and v — w. 

Solution: 

v + w    = 

-2 + 4i   l + 3i and w -6i compute 

-2 + 1/2 + 4i 

l + i(3-6) 

-3/2 + 4i 

I-Si 
and 

v — w 
-2-1/2 + 4;     _     -5/2 + 4Z 

1 + i(3 + 6) 1 + 9; 

If two vectors are not from the same space, 1ln or Cn, then the operations 

of addition and subtraction are not defined and we say that the vectors are not 

compatibly sized for addition and subtraction. 

Example II.5 Given v = 
v + w. 

-2 + ii   1 + 3i   4 I    and w =    \   -Gi ]   , compute 

Solution: v + w is not defined, since v and w are not compatibly sized for addition. 

14 



Example II.6 Given v = 
pute v — w. 

Solution: 

3   -2   0   5 - 3»      and w =    -4   3»   -i   1 com- 

w = 

3 -4 

-2 

0 
— 

3»' 

—i 
= 

5-3»' _ 1 

7 

-2 —3i 

» 

4-3» 

Example II. 7 Given a = 2 and v 

Solution: 

av = 2 

3   2»'   -1   0 

3 6 

2»' 

-1 
= 

4»' 

-2 

0 0 

, compute av. 

Example II.8 Given a = -2 + i and v =    — %   0   —1+4»   —3 — 5»      , compute 
av. 

Solution: 

av = (-2 + »') 

-2» 

0 

-1+4» 

-3-5» 

2 + 4» 

0 

-2-5» 

11 + 7» 

To further understand how these vector operations work, we might look at 

them geometrically. Most people have no trouble understanding vectors in the two- 

dimensional sense, as an arrow in the Cartesian plane. Just as we can add and 

subtract vectors algebraically, we can also "add" and "subtract" the arrows to create 

new arrows, or vectors. The following paragraphs will attempt to tie together the 

notion of vectors in n space and the geometric interpretation of the basic algebraic 

operations of addition, subtraction, and scalar multiplication. 
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In a simple two-dimensional case, a vector can be viewed as an arrow ema- 

nating from the origin. The elements of the vector consist of the coordinates of the 

head of the arrow, or, similarly, the distance moved horizontally and vertically from 

the origin. As shown in Figure 1, the vector v is represented by the coordinate pair 

(3,1), and w by the coordinate pair (1,3). We represent this pictorially as shown in 

Figure 1. 

1        2        3 

Figure 1. Two-Dimensional Vector Representation 

v = 3   1 , and w = 1   3 

This is the two-dimensional case. We can then easily visualize the three-dimensional 
r -iT 

case. Given v = x y z , we represent v by an arrow from the origin to 

P(x,y,z). 

Vectors in two and three dimensions are easy to visualize, and we can translate ge- 

ometric concepts such as length into vector operations. Although n dimensions are 

difficult to visualize, we can still talk about addition, subtraction, scalar multipli- 

cation, and length of n-dimensional vectors. Notice again, that, as in Figure 1, if 

the order of a vector v's elements are rearranged, a new vector w is formed that is 

entirely different from the original vector. So we see that the order of vector elements 

is important. 

16 



Now we look at vector addition in the Cartesian plane. To add any two vectors 

v and w geometrically, the vectors are first attached head to tail. In Figure 2, if we 

add v to w, the resulting vector v + w is computed by sliding a copy of vector w 

without changing its direction, over to the head of vector v. Then draw a line from 

the origin to the head of the copied vector w. This new line emanating from the 

origin is the solution vector v + w. If the two vectors are added analytically, the 

result will be the same as the geometric solution. The key to remember is that, when 

the copy of the second vector is moved, its head and tail must remain in the same 

relative positions as the original. 

*- x 

Figure 2. Vector Addition 

Vector subtraction is performed in the same manner as addition. The only 

difference is that the negative of the second vector is used. Therefore, as shown in 

Figure 3, to compute v — w, we subtract vector w from v by taking the negative of 

vector w, which reverses its direction, and then slide a copy of it over to the head of 

vector v. This is the same procedure as adding two vectors. We are now just adding 

the negative of w. 

To understand scalar multiplication, it might help to look at Figure 4. Again, 

we have two vectors v and w. Notice v + v = 2v. Therefore, scalar multiplication is 

just the act of stretching, shrinking or reversing the direction of the original vector. 

17 



y 

- w 

Figure 3. Vector Subtraction 

If we multiply the vector v by the scalar 2, we see that it is stretched to twice its 

original length in the same direction. If we multiply vector w by the scalar |, we 

see that it is stretched so that the new vector is half again as long as the original 

w. If either of these vectors were multiplied by a negative scalar, the vector would 

reverse direction, and, depending on the magnitude of the scalar, the vector would 

be stretched or compressed. 

Figure 4. Scalar Multiplication of a Vector 

With the definitions and geometric representation of vector addition, sub- 

traction, and scalar multiplication, we can now show some important properties of 
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vectors. 

Theorem II. I Given the vectors v, w, u € Cn, and the scalars a,ß G C, the following 
properties of vector addition, subtraction, and scalar multiplication hold: 

1. v + w = w + v 

2. v + (w + u) = (v + w) + u 

3. a(v + w) = öv + aw 

4. (a + /?)v = av + ßv 

5. a(/?v) = (aß)v 

6. v + 0 = v 

7. v + (-v) = 0 

8. lv = v 

9. (_i)v = -v 

10. Ov = 0 

Example II. 9 Given v = 
termine whether v + w = w + v. 

v\   v2   v3   v4 and w Wj    XÜ2    w3    w4 , de- 

Solution: 
Vi +IÜ1 Wi +Vi 

V + w = 
V2 + W2 

V3 + W3 

V4 + W4 

= 
W2 + V2 

W3 + V3 

W4 + t>4 

= W + V. 

We can easily extend the above example to any size vector. The proofs of the remain- 

ing properties are left as exercises. 

A.     THREE SPECIAL CASES OF MATRIX MULTIPLI- 
CATION 

Recall the definition for matrix multiplication: if A € Cnxp and B € CpXm, 
v 

the product AB is defined as (AB)y- = XT A^B^-. The first special case occurs when 
fc=i 
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we multiply a matrix and a column.  The matrix multiplication definition becomes 

(Ax)s- = E A^xfcl. The equation Ax = b is called the matrix equation. 

Example 11.10 Given A = 

Solution: 

Ax 

-2   0 
1   4 

-3   5 
and x = , compute b = Ax. 

-2   0 
1 

-2 

1   4 
1 

— 5 

-3   5 2 

= b. 

The second special case occurs when we left-multiply a single column by a row. 
P 

The matrix multiplication definition becomes xTy = £ AifcB/ci = a- Notice that the 

matrices must still be compatibly sized.  The result is a scalar, which leads to the 

name for this special case, i.e., the scalar product (or a). 

corn- Example 11.11 Given x = [ 3   -4   0   -2 ]    and y = [ 4   1    -5   -3 ]    , 

pute xTy. 

Solution: xT and y are compatibly sized for matrix multiplication since x € 1llx4 

and y € ft4xl. Therefore, 

T xJy = 3-4   0-2 

4 

1 

-5 

-3 

= (12-4 + 0 + 6) = 14. 

The third special case occurs when we left-multiply a row by a column. This 

result is called the outer product. The matrix multiplication definition becomes xyT = 

£ AjiBi; = C. Again, notice that the matrices must still be compatibly sized. So we 

get a square matrix. 

Example 11.12 Given x = | 3   -4   0   -2 J    and y = [ 4   1   -5   -3 j   , 

pute xyr. 

com- 
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Solution: 

xy 

4 

1 

-5 

-3 

-4   0 

12 -16 0 -8 

3 -4 0 -2 

15 20 0 10 

-3 12 0 6 

In the last two examples we computed the scalar product xTy and the outer product 

xyT, using the definition for matrix multiplication. The results were a scalar and a 

matrix, respectively. In the dot product section we will examine columns and rows 

more carefully. 

B.     VECTOR NORM 

As we have already discussed, we can think of a vector as a point in ra-space 

where the coordinates of the point are given by the elements of the vector.   For 

example, we can think of the vector v 3   2 as a point in the Cartesian plane 

with coordinates (3,2). It is also common to think of a vector as the directed line 

segment joining the origin and a coordinate point. Using the Pythagorean theorem, 

we can then find the length of the vector, or the distance from the origin to the point. 

Example 11.13 Given v =    3   2      , compute the length of v. 

Solution: The length of v is V32 + 22 = y/lZ. 

Notice that this looks similar to the special case of a row times a column, 

T v v = 3   2 
3 

2 
= 32 + T = 13. 

All we have to do is take the square root of this special case and we have the length. 

Definition II.4 Given a point (x,y) in the plane, the distance from the origin to the 
point is y/x2 + y2. 
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Since vTv is the square of the length of v, it seems natural to define the length of a 

vector using this special case. 

Definition II.5 Given a vector v e Cn, the Euclidean length, or 2-norm, of v, de- 
noted by ||v||2, is 

/ 

|v||2 = VvHv v1    v2   ■    ■   vn 

V2 

Vn  jj 

l 

\5 

j(vl + v* + ---+vl). 

Example 11.14 Given v 

Solution: 

-3   1   4 
lT 

, compute ||v||2, 

|v||2 = VvHv 

V 

Example 11.15 Given v = 

Solution: 

vHv   =       a —hi   c — di 

-3   1   4 

-3 

1 

4 

\* 

V9 + 1 + 16 = V26. 

J/ 

a + bi 
c + di 

H^ and a, 6, c, d G 7£, compute v" v 

a + bi 

c + di 
(a — bi)(a + bi) + (c — di)(c + di) 

=   a 2 _ ^2 +c2_ ^2 =a2 + b2 + c2 + d2_ 

This operation always produces a real scalar, and therefore agrees with our notion of 

length. 

iT 
Example 11.16 Given v =    —2 + 4z   1 + 3i   5   -3 - i     , compute ||v||2 
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Solution: 

|v||2   =   VvHv -2 - 4z   1 - Zi   5   -3 + i 

-2 + 4i 

1 +3z 

5 

-Z-i 

i 

\5 

=   V20 + 10 + 25 + 10 = y/EE. 

It is important to understand there are numerous other norms which are all abstrac- 

tions of the notion of length. One of these norms is the p-norm. The 2-norm is a 

specific case (p = 2) of a p-norm, which is defined as follows. 

Definition II.6 Given a vector v <E Cn, the p-norm of v, denoted by ||v||  , is 

INI, = (E NP) P » where p>l. 

Example 11.17 Given v 

Solution: 

-2   15-3 , compute Hvllj. 

^ = 1-21 + 111 + 151 + 1-31 = 11. 

Example 11.18 Given v = -2   15-3 ,- compute ||v||2, 

Solution: 

M|2=(|-2|3 + |l|2+|5|a + |-3|2)'=V39. 

Example 11.19 Given v -2   15-3 , compute ||v| 

Solution: 

Ml«, = nw \vi |=max{|-2|,|i|,|5|,|-3|} = 5. 

We found Hv^ by letting p —► oo in I £ \vi\P )    5 and taking the limit. 
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C.     THE DOT PRODUCT 
Vector addition and subtraction in the plane seem natural, and we can visualize 

how a solution is found. On the other hand, we can define the notion of vector 

multiplication in many different ways. The dot product, also known as the scalar 

product, is one way to define vector multiplication. 

Definition II.7 Given two vectors v,w <E Kn, the dot product of v with w, denoted 

by v • w, is 

' 
Vl W\ 

V2 w2 

V • w = ■ • 

Vn Wn 

(viWi + v2w2 -\ vnwn). 

Example 11.20 Given v = [ -4   1 
T r iT 

and w =    2   —6 1   , compute v • w. 

Solution: 

v • w = (-4)(2) + (l)(-6) = -8 - 6 =? -14. 

Note that, when we take the dot product of two vectors, the result is a scalar, hence 

the name scalar product. The definition of dot product is valid for real vectors, but 

we will need a different definition in order to deal with complex vectors. The dot 

product is a specific case of an inner product. The next definition is also a special 

case of an inner product. We will use this definition by default when we are talking 

about the inner product. 

Definition II.8 Given two vectors v,w G 1Zn, the inner product of v with w, de- 

noted by vTw, is 
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T 
VW Vl     V2 

w2 

wr. 

- (viWi + v2w2 H 1- vnwn). 

This is the dot product, again. But this definition is a natural extension of the 

definition of matrix multiplication. The inner product for complex vectors is similar 

to that of the reals, except that the Hermitian transpose of v is used instead of the 

transpose of v, as shown in the following definition. 

Definition II.9 Given two vectors v, w G Cn, the inner product of w with v, denoted 
by w^v, is given by 

rr 
w   v lOl    w2 Wr, 

V2 

= (viWi + v2w2 -\ h vnwn). 

Example 11.21 Given v 
wHv. 

Solution: 

-2 + 4i   1 + Zi and w 2   -i 
iT 

;  compute 

wHv 2   i 
-2 + U 

l + 3i 
= (2)(-2 + 4i)+ (»)(!+3») 

=   -4 + Si + i - 3 = -7 + 9i. 

What happens in this example if we reverse the order of the vectors? That is, if 

we compute vHw? If the vectors are real, we get the same result. But notice what 

happens when the vectors are complex, as in the following example. 
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Example 11.22 Given v -2 + Ai   1 + Zi 
T 

and w = 2   -i compute 

V   w. 

Solution: 

V   w    = -2 - 4i   1 - Zi 
2 

—i 
= (-2 - 4i) - (2) + (1 — 3t) ■ (-0 

=   -4 - 8i - % - 3 = -7 - 9i. 

This is the complex conjugate of the product in the previous example, and demon- 

strates that, in general, v^w ^ wHv. However, wHv = vHw always holds. If one 

or both vectors are complex, then the two different orders of computing the inner 

product lead to results that are complex conjugates of each other. Notice that the 

definition for the inner product of complex vectors can be used for real vectors. 

Example 11.23 Given v = [ -2 + 4z   1 + Zi   5 ]    and w = [ 2   —i], compute 
T W   V. 

Solution:  wTv is not defined since the two vectors are not compatibly sized for 

vector multiplication. 

Example 11.24 Given v = 

compute w^v. 

—2 + 4z   l+3i   5 and w = —5i   — 4 — i   6 

Solution: 

W    V hi   —4, + i   6 

-2 + 4z 

1 +Si 

5 

=   5i(-2 + 4i) + (-4 + i) (1 + Zi) + (6) (5) = 3 - 21i. 
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Now that we have defined the inner product, we can show some properties of 

vector products. 

Theorem II.2 Given the vectors v, w, u 6 Cn, and the scalars a, ß € C, the following 
properties of vector multiplication hold: 

1. vr(w + u) = vTw + vTu (left distributive law) 

2. (wT + ur)v = wrv + urv (right distributive law) 

3. a(vTw) = (o:vT)w = vT(«w) 

The proofs are left as exercises. 

D.     ORTHOGONALITY 

Orthogonality is another term best explained in a specific and easily visualized 

case. In 7Z2 and 7£3 we say that two vectors v and w are orthogonal if they are 

perpendicular, and write vlw. As the dimensions of v and w increase, it is difficult 

to visualize perpendicular vectors. If we talk about complex vectors it is nearly 

impossible to visualize perpendicular vectors. However, we can define "perpendicular" 

vectors of any dimension, real or complex. We will use the inner product to determine 

whether two vectors satisfy our definition. 

Definition 11.10 Vectors v,w G Cn are orthogonal if vHw = 0. 

Example 11.25 Given v = 
and w are orthogonal. 

2   4 
■\T 

and w = 2   -1 , determine whether v 

Solution: 

vrw = (2)(2) + (4)(-l) = 0. 

Therefore, v is orthogonal to w. This can be quickly verified by drawing the vectors 

in the Cartesian plane. If we look at Figure 5, we see that v = 
iT 

2   4 

tow = -1 since they are separated by 90 degrees. Yet, u =' 

is orthogonal 

-1   3 is not 

orthogonal to either v or w. This can be verified by computing the inner product or 

27 



i »x 

Figure 5. Vector Orthogonality 

by looking at the vectors geometrically. Although it is difficult to visualize more than 

three dimensions, using the definition of orthogonality we can determine whether two 

vectors having the same number of elements are "perpendicular" or not. 

Example 11.26 Given v = [ -2 1 5 -3 ] and w = [ -5 -4 7 6 ] , deter- 
mine whether v and w   are orthogonal. 

Solution: vTw = -2(-5) + l(-4) + 5(7) - 3(6) = 23. Therefore, v and w are not 

orthogonal. 

Example 11.27 Given v =  [ 4   0   2   4   -7 
determine whether v and w  are orthogonal. 

and w -296-10 

Solution: vTw = 4(-2) + 0(9) + 2(6) + 4(-l) - 7(0) = 0. Therefore, v and w are 

orthogonal. 

Example 11.28 Given v =   [ -1 - 4t   8z    1 
determine whether v and w   are orthogonal. 

iT 
and w = 6   -1    -1+32* 

■\T 

Solution: v^w = (-1 + 4z)(6) - 8i(-l) + 2(0) = -1 + 32i. Therefore, v and w are 

not orthogonal. 
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Example 11.29 Given v =     -l+2i   Si   1 
termine whether v and w  are orthogonal. 

iX 
and w 3   -1   3 + 2* de- 

Solution: vHw = (-1 + 2i)(3) + 8i(-l) + 1(3 + 2i) = 0.  Therefore, v and w are 

orthogonal. 

E.     PROJECTIONS 

Before beginning the discussion of projections, let's first define a unit vector 

and what is meant when we refer to the angle between two vectors. If u € Cn and 

||u|| = 1, then u is a unit vector. 

Definition 11.11 Given any vector x£C°,a unit vector u can be formed by dividing 
the vector x by its magnitude or 2-norm: 

u = 

The proof that shows why u is a unit vector is straightforward. We start by using 

the formula for calculating a unit vector, u = M^TT, then we find the magnitude of u. 

(If u is a unit vector, its magnitude must be equal to 1). Happily, 

u   = 
X    \        X XTX 

1 
XJX 

xTx, = 1, nlMli   l|x||     ^VNIINly 

as anticipated. This argument also holds true for complex vectors. Remember that 

the magnitude or 2-norm of a vector is equal to the length of the vector. Therefore, 

when we divide a vector by its magnitude, the result is a vector with unit length, 

pointing in the direction of the original vector. 

Example 11.30 Given v = 4   0   2   4-7 form the unit vector u. 

Solution: 
v v 

u = 
vVrv 

iT 

4   0   2   4   -7 
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Example 11.31 Given v = 
u. 

-2 + Ai   1+3*   5   -3-i form the unit vector 

Solution: 

u = 
y/vH-\ 

-2 + 4i   l + Si   5   -3-i 

Figure 6. Angle Between Two Vectors 

Next, let's define the angle 6 between two vectors in 1Z2, as shown in Figure 6. Starting 

in the plane and using the law of cosines, we can find the angle between two arbitrary 

arrows. Since the arrows in the plane correspond to vectors, all we have to do is use 

the law of cosines on the vectors and clean up the notation. In Figure 6, the arrows a 

and b are connected by the arrow a — b = c. The angle between the arrows a and b 

is 6. The lengths of the arrows are ||a|| = a, ||b|| = 6, and ||c|| = c. The law of cosines 

states c2 = a2 + b2 — 2abcos9. Making the vector substitutions, a = v,b = w, and 

c = v — w and using the law of cosines, we have 

l|v-w||2=||v||2+||w||2-2||v||||w||cosö. 

Now expanding ||v — w||   , we have 

v — w = (v - w) • (v - w) =|| v ||2 - 2v • w+ w 
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Equating these two equations yields 

v II2 - 2v • w+ II w ||2H| v ||2+ || w ||2 -2 || v || II w || cos 6. 

Canceling like terms leaves us with 

-2v-w = -2 || v || || w || cos0. 

Finally, 

vHw=|| v || II w || COS0. 

Theorem II.3 Given vectors v andw in %2, the angle 0 between v andw is defined 
by vHw = ||v|| ||w|| cos 6. This generalizes to Cn. 

This fact is useful when we are given two vectors and desire to find the angle 9 between 

them. 

Example 11.32 Given v = 
pute 6. 

-2   15-3 and w = -5-4   7   6 
iT 

, corn- 

Solution: 

cos 6 = 
V • w 

v       w 
Therefore, 6 = cos 1(—y=—^===). 

39V126 39V126' 

Now let's make a couple of observations about the vector v = 11 m 

Figure 7. The length of v is || v || = y/2. Also notice the angle that v makes with the 

x axis is j radians or 45°. Applying simple geometry we find that the length of the 

y coordinate is \/2sin (f j = 1 and the length of the x coordinate is \/2cos (j) = 1. 

This gives us the components of v along the y and x axes respectively. This can 

be restated as the projection of v onto the y and x axes.   The projection vectors 

are represented by 0   1 and 1   0 respectively.   However, we can find the 

components of v with respect to any arbitrary vector, not just the coordinate axes. 
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V2, 

-+-   x 

Figure 7. Length of a Vector 

Definition 11.12 The projection ofv onto w, denoted by projwv, is the portion of 
w which is constructed by passing vector z perpendicular to w to the end of v. The 
projwv extends from the origin to the base of z. 

Definition 11.13 Given vectors v, and w, the magnitude of projwv is given by 

||j9rojwv|| = ||v|| cos#. 

p = projwv 
 *. x 

Figure 8. Projection Vector 

In Figure 8, we draw a vector z perpendicular to w which passes through the end of 

v. In order to find projwv = p as in Figure 8, all we have to do is multiply ||proywv|| 
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by a unit vector in the direction of w. To find p, let's first look at our definition in 

we have vector form. Replacing cos 9 in the previous definition with ,,^,,,^,,, 

T 

||projwv|| = ||v| 

Canceling like terms we obtain \\projwv 

unit vector in the direction of w: 

w 

v w 

. Finally multiply || projwv || by a 

w 
\\projwv\ 

w   WTV T WJ V 
w- 

|w|| ||w|| WTW 
projwv. 

Definition 11.14 Given vectors v, and w, the projection o/v onto w is 

W1 V 
projwv = w^r- . 

wi w 

This gives us the component of v in the direction of w. 

Example 11.33 Given v = 
pute projwv. 

Solution: 

-2   1   5 and w = -5-4   7   6 
-iT 

com- 

WJ V 

w1 w 

-5 

-4 

7 

6 

23 

126' 

Example 11.34 Given v 
compute projwv. 

Solution: 

4   0   2   4 

T W1 V 
projwv = w 

wJ w 

and w -296-10 

4 0 

0 0 

2 
0 

122 0 

4 0 

-7 0 

Notice this agrees with what we found earlier about the orthogonality of v and w. 

33 



Example 11.35 Given v = 
projwv. 

-1 - 4z   8i   2 
iT 

and w = -1    0 
■\T 

, compute 

Solution: From a previous example, we know that v^w = — 1 + 32i. Therefore, 

projwv 

6 

-1 

0 

■1 - 32i 

In the derivation of the definition of projection, we used vector notation. As we 

have said, there is very little difference between vectors and arrows in the plane. The 

advantage is that in vector notation we can leave the plane and enter n-dimensional 

spaces and maintain our geometric interpretation. But, as you may have already 

noticed, we will continue to use the two-dimensional and three-dimensional language 

even when we are in n -dimensional space. 

F.      LINEAR COMBINATIONS 

Now that we have the ability to perform addition, subtraction, and scalar 

multiplication on vectors, we can build weighted sums of vectors, called linear combi- 

nations. 

Definition 11.15 Given vectors vl5v2 • • • v; € Cn, and scalars ai,a2 • • • oti, the 

weighted sum w = Yl ö*v; = aivi + <*2V2 + • • ■ + oi/V/ is a linear combination of the 
i=l 

vectors Vi, v2 • • • v/ and is also called the vector equation. 

1   2 
iT 

and v2 = 2   4 Example 11.36 Given Vi = 

such that w =    4   8      is a linear combination of Vi and v2 

find scalars a.\ and a2 

Solution: Remember, to be a linear combination of Vi and v2, w must be repre- 

sentable as a weighted sum of vectors Vi and v2. Therefore, we must find ax and a2 

such that 

34 



4 
= «l 

1 
+ Oi2 

2 

8 2 4 

By inspection, if we let a-i = 2, and a2 = 1, then 

4 
= 2 

1 
+ 1 

2 

8 2 4 

So we see that there is at least one set of scalars for which w is a linear combination of 

V! and v2. Later it will become much clearer how to find these scalars mathematically. 

The notion of a linear combination is one of the most fundamental ideas in linear 

algebra and it will come up over and over again throughout this text. 

Example 11.37 Given Vi = 

can form linear combinations of v1,v2, v3, and v4 as follows: 

r 11 r o i r o ] 
0 
0 ,v2 = 

l 
0 ,v3 = 

0 
l 

. 0 . . 0 . . 0 . 

, and v4 = 

0 
0 
0 
1 

we 

-2vi + 3v2 + 7v3 - 4v4 = -2   3   7-4 and 

20vi + -6v2 + 0v3 + 9v4 20   -6   0   9 

Example 11.38 Given v1 

form linear combinations of Vi, v2, v3,and v4 as follows 

i ' r o i r o i 
0 
0 

,v2 = 
i 
0 

,v3 = 
0 
i 

. 0 . .0 . . 0 . 

, and v4 

0 
0 
0 

,we can 

—2va + 3v2 + 7v3 — 4v4 

iT 

-2i   3i   7t   -At and 

20vx + -6v2 + 0v3 + 9v4 = 20i   -6i   0   9i 
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G.     LINEAR INDEPENDENCE 

We say a set of vectors is linearly independent if no vector of the set can be 

written as a linear combination of the other vectors of the set. 

Definition 11.16 Given a set of vectors {vi,v2, ,v/}, a homogeneous equation is 
an equation of the form: 

0 = OfiVi + a2v2 -\ h or/V{. 

Definition 11.17 If the only solution to the homogeneous equation is the trivial 
solution, that is c*i = a2 = • • • = e*z = 0,then the set {vx,v2, , V/} is said to be 
linearly independent. If a nontrivial solution exists, then the set of vectors is said to 

be linearly dependent. 

Example 11.39 Given vectors w, v, and u, determine whether they are linearly in- 

dependent. 

Solution: 

w 

4 1 

8 ,v = 2 

0 -1 

and u 

2 

4 

By inspection, we see that the following homogeneous equation has a nontrivial so- 

lution. Let ax = — 1, a2 = 2, and 013 = 1. 

0 4 1 2 0 

0 = -\ 8 + 2 2 + 1 4 = 0 

0 0 -1 2 0 

Therefore, w, v, and u are linearly dependent. 

H.     SPANNING SETS 

In a previous section we saw how a set of vectors could be used to form new 

vectors. Here we will use the notion of linear combinations to define the span. The 

span is the set of all possible linear combinations of a given set of vectors. This will 

also lead to the idea of vector equations. 
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Definition 11.18 Given a set of vectors S = {vi, v2, • ■ •, v/}, the span of S, denoted 
by span{vj, V2, • • •, V;},or span(S'), is the set of all linear combinations of the vectors 
in 5". If V C span^), then 5 is also known as a spanning set of V. 

r       o i r       l 

Example 11.40 Given v = -l+i 
2-Si 

, w = 
2i 

A-li 
3 . 0 

mine whether b is in span{v, w}. 

and b 

-2 
1 
1 
i 

, deter- 

Solution: In other words, can we find two complex scalars, o^, and 0:2, such that 

0 1 -2 

-l+i 

2-Si 
+ oc2 

2i 

4-7z 
= 

1 

1 

3 0 i 

«1 

In order to find a solution we must solve four equations: 

ai(0) + a2(l) -2 

a! (-l+i) + a2(2i) _      1 

^ (2-Si) + a2(4-7i) 1 

<*i(3) + a2(0) i. 

However, 0/1, and a2 must satisfy all four equations simultaneously. By inspection, 

we see there are no values for a.\ and Of2 that satisfy all four equations simultaneously. 

This tells us that b is not a linear combination of v and w. Therefore, b is not in the 

span of v and w. Keep this example in mind when we move into systems of linear 

equations. 

I.      BLOCK OPERATIONS 

It is often convenient to think of a matrix as having elements that are them- 

selves matrices. By doing this, one can impose structure on a matrix, expose the 

structure of a matrix, or somehow simplify the way we look at the matrix. For very 
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large matrices, the concept of block matrices is a must. Matrices whose elements 

are themselves matrices are called block matrices. In a sense, every matrix is a block 

matrix if you think of its elements as 1 x 1 matrices instead of scalars. However, there 

are many other ways of partitioning a matrix into blocks. 

Example 11.41 Given A 
1 2 3 
4 5 6 
7   8   9 

Vi = 
r11 " 2 " " 3 " " 1 " ' 4 " 

4 ,v2 = 5 ,v3 = 6 ,Ui = 2 ,u2 = 5 
7 8 9 3 6 

,  and U3 = 
7 
8 
9 

two additional ways of representing A in the form of a block matrix are 

Vi    v2   v3 and A 

u 

u 

ui 

Two block matrices are compatible for addition if they have the same number 

of rows and columns and the individual blocks are compatibly sized for addition. Two 

block matrices are compatibly sized for multiplication if the first matrix has as many 

columns as the second matrix has rows and the number of columns in each column 

block of the first is the same as the number of rows in the corresponding row block 

of the second. 

Example 11.42 Given u 

and vuT. 

u u Uc and v = va   v2   v3 , compute uTv 

Solution: 

T 
Ul 

T T UjV2 
T U1V3 

T U   V     = T 
U2 V!     V2     V3 = T II2V1 T 

UjV2 
T 

U2V3 

T 
3 

T 
U3V1 U3V2 

T 
U3V3 

and 

vu Vi    v2    v3 

u? 

u^ 

u. 

viuf+v2u^+v3uj 
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The preceding example shows the outer product form of matrix multiplication 

and the inner-product form of matrix multiplication, respectively. By looking at these 

two forms, we can see that the inner product form of multiplying two n x n matrices 

requires the computation of n2 inner products at a cost of n multiplications and n — \ 

additions each, for a total of n3 multiplications and n3 — n2 additions. The outer- 

product form requires the computation of n outer products with n2 multiplications 

each for n3 multiplications, and n — 1 additions ofnxn matrices for n3 — n2 additions. 

That is, the same number of multiplications and additions are required. However, 

if we time the two forms of matrix multiplication in MATLAB with two 100 x 100 

matrices, we will find that it takes roughly 55% longer to do a matrix multiply using 

the inner product form. There are many other ways of partitioning matrices into 

blocks that we will see as they become useful. 

J.      EXERCISES 

1. Given x 

pute 

-1+2J -2 

2-3£ ,y = 3 

-7i 1 

a)x* 

e) x + z 

b)yT 

f) x + zT 

and z -2 + 4z   6 , write or com- 

c) x + y 

g)2z* 

d) 3x - 2iy 

h) z + z 

2.  Given u 

through 10. 

" " 
«1 t>l 

«2 ,v = V2 

Uz V3 

, and w = w2 

w3 

verify Theorem II. 1 parts 2 
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3. Given x = 

1 -3 

2 ,y = 0 

4 2 

, and z = 

5 

2 

-2 

compute 

a) x • z b) x • y c) x(z • y) d) (y • z)x 

4. Given x 

-5 -2 

2 ,y = 3 

1 1 

and z 

-5 

7 

0 

compute 

i) x • z b) (x • z)y c) x(z • y) d) (y • z)x 

5. Given u = 

r           -l 
_ 

«1 Vl 

M2 
>v = V2 

M3 vz 

and w = 

lüi 

U>2 

1Ü3 

, verify Theorem II.2. 

6. Given x 

-5 + t -2 

2-3t ,y = 3-i 

l+4i l+3t 

and z = 

a) xTy       b) yTz        c) zTx        d) yTx 

-5 - 2£ 

-4i 

3 

e) zTy        f) xrz 

compute 

7. Using x, y, and z from question 4, compute 

a) (xTz) y b) x (zry) c) (yrx) z d) y (xTz) 

8. Using through x, y, and z from question 6, compute 

(x^z) y b) x (zHy) c) (y^x) z a d) y (x*z) 
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9.   Given w = 

orthogonal pairs. 

1 4 0 

-2 ,x = -2 ,y = l 

1 2 2 

and z 

2 

-2 

-6 

, find all the 

10. Given x = 

4 6 

-2 

0 
,y = 

1 

-3 

2 4 

, and z = 

a) Compute ||x||. 

b) Compute ||y||. 

c) Compute ||z||. 

d) Are x and y orthogonal? 

e) Are z and y orthogonal? 

f) Are x and z orthogonal? 

1 

2 

5 

0 

4 + 2i -2t 1 

1. Given x = 
-2 

-3 + i 
,y = 

1 + i 

-Si 
, and z = 

2t 

-l+4i 

-hi -1 + lOi z 

a) Compute ||x||. 

b) Compute ||y||. 

c) Compute ||z||. 

d) Are x and y orthogonal? 

e) Are z and y orthogonal? 

f) Are x and z ort hogona 1? 
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12.   Given v = 

compute 

-4 -16 

2 6 
,w = »x = 

-5 3 

7 -2 

—2 

2-i 

-3 + 2i 

6 + 5i 

and y 

6 

-3 - 4t 

-5i 

2 

a     v b) ||w|| c) ||x||        d) ||y||        e) Find all the orthogonal pairs. 

-2 3 

13. Given v = 
0 

3 

1 

and w = 
-5 

-4 

2 

, compute 

a) wTv 

b) wTw 

c) cos6, where 9 is the angle between v and w 

d) projw1 
V 

-2 3 

14. Given v = 
3 

3 

-2 

and w = 
-5 

-4 

0 

, compute 

a) wTv 

b) wTw 

c) cos0, where 9 is the angle between v and w 

d) projw V 
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15. Given v 

-2i 

3 

S-i 

-2 + 4i 

S + i -2 

-hi 0 
,w = ,x = 

-4 3 

0 1 

and y = 

3 

-5 

-4 

2 

compute 

cos#, where 0 is the angle between 

a) w and v      b) w and x      c) x and y      d) v and y      e) x and v 

f) w and y 

16. Given vectors u, v,w,x G 7l3, and the vector equation —2(2x + v) = 3(w — u), 

express x as a linear combination of u, v, and w. 

17. Given v = 

-2i -2i -2 

3 ,w = i ,x = 3 

S-i 2 + 2i 1 

and y 

2 

—i 

-Si 

a) Write a vector equation with w, x, and y as independent variables multiplied 

by some scalar, and. v as the dependent variable. 

b) Find w + x + y. Is v in the span {w, x, y}? 

c) Are v, w, x, and y linearly independent? 

18. Given A 

columns of A? 

1 -3   -2 

-2      2      6 

2 -8   -3 

and b 

6 

-3 

5 

is b a linear combination of the 
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19. Given A 

columns of A? 

2 

1 

3 

2 

-1 

0 

-3 

1 

3 4 

-2 7 

1 5 

4 4 

and b = 

9 

11 

8 

10 

, is b a linear combination of the 

44 



III.        LINEAR TRANSFORMATIONS 

Linear transformations are extremely powerful tools. In reality, a linear trans- 

formation is simply a way of looking at what goes into, and what comes out of a 

black box. When speaking about functions of the form y = /(x), we take a variable 

x, perform some function on it, and get a result y. The function is the black box, 

with input x and output y. We use special terms to define ideas about this system. 

The function f(x) is a "black box", which assigns y (an element from the range) to 

x (an element from the domain). In other words, x is transformed by the function 

f(x) into y. When discussing linear transformations involving vectors and matrices, 

we will use special terms to define similar ideas. Recall that a function is a rule that 

assigns to each element in a set A (the domain), one and only one element from a 

set B (the codomain). When dealing with vectors and matrices we will use the terms 

map or transform instead of assign. Therefore a linear transformation ("black box") 

will map (or transform) a vector x to a vector b. Given a function /, the notation 

/ : A —> B means that / is a transformation from A to B. 

Now let's make the jump to linear algebra and see that transformations are 

functions. 

Definition III.l A transformation from %n to 7lm is a rule that assigns to each 
vector x £ 7Zn a vector y G 7lm. Formally, we say that a transformation T, denoted 
by T : Kn —► 7lm, maps Kn into Tlm. 

We can use just about any rule to define a transformation. In matrix algebra, though, 

we are particularly interested in transformations of the form T(x) = Ax. Such a 

transformation takes a vector x, and transforms it by multiplying on the left by a 

compatibly-sized matrix A. Since we know that a vector x multiplied by a matrix A is 

some vector b, then we can write Ax = b, or in other words, a matrix A transforms a 

vector x into a vector b. Suppose that x 6 1Zn is mapped to a vector b € 7lm by the 

matrix A. Based on our knowledge of matrix multiplication, what can we say about 
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the dimensions of A? Since x 6 Un and b 6 %m then A € 7£mXn. Now that we know 

what a transformation is, let's define exactly what is meant by linear transformation. 

Definition III.2 T : 7Zn —> 7Zm is a linear transformation if, for any vectors x and 
y € 1Zn and any scalar c £ 1Z, the following two conditions hold: 

l)T(x + y) = T(x) + T(y) 

2) T(cx) = cT(x). 

This definition implies that it doesn't matter whether addition or scalar multiplication 

is performed before or after the transformation; the same results will be achieved. In 

order to clarify this idea, we will use the analogy of a chef in the kitchen preparing 

a salad and baking bread. Generally, the act of chopping is a linear transformation. 

You can either chop the vegetables up individually, then mix them, or you can mix the 

whole vegetables and then chop the entire mixture. Either way, you will end up with a 

bowl of chopped vegetables. However, baking in general is not a linear transformation. 

A good chef will follow the baking instructions and mix the ingredients first, then 

bake the bread. A skeptical mathematician will bake the ingredients individually and 

then try to mix the ingredients. Surely, bread can't be made this way. The order of 

baking and mixing is very important. 

Example III.l Given T(x) = Ax, determine whether T is a linear transformation. 

Solution: In order to determine this, T must satisfy the two conditions previously 

stated. We start with the first condition, T(x + y) = T(x) + T(y). 

Working with the left side of the equality by definition of T, we have 

T(x + y) = A(x + y). 

Since matrix multiplication is distributive, it follows that 

A(x + y) = Ax + Ay. 
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Now, working with the right-hand side of the equality, 

T(x) + T(y) = Ax+Ay. 

Therefore, 

T(x + y)=T(x) + r(y). 

This satisfies the first condition, but what about the second condition? We must 

show that 

T(cx) = cT(x). 

Working with the left-hand side of the equality, we have 

T(ac) = A(cx). 

Since scalar multiplication of vectors and matrices is commutative, then 

A(cx) = cAx. 

Now working with the right-hand side of the equality, we have 

cT{-x) = cAx. 

Therefore, T(cx) = cT(x), which satisfies the second condition. Since conditions one 

and two are satisfied, T(x) = Ax is a linear transformation. If either condition did 

not hold, then the transformation would not have been linear. 

Example III.2 Given T(x) = 

whether T is a linear transformation 

sin^i) 
,x 

X2 
, and y 2/1 , determine 

Solution: Again starting with condition one, 

T(x + y)   =   T 
xi +2/1 

Z2 + J/2 

sinfci + yi) 

Vx2 + 2/2 
while 
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sin(xa) 
+ 

sin(yi) sin(xi)   + sin(yi) 

yßl y/yi V^2       + x/2/2~ 

sin(xi + yi) 
^ 

sin(xi)   +   sin(j/i) 

V^2      +      V^2 
= r(x) 

VX2 + S/2 

T(x)+T(y) 

T(x + y)   = 

Because condition one does not hold, T is not a linear transformation. 

so 

" 2x1 ' 
>x = 

Xj 

L   x* \ [ x'2 J 
Example III.3 Given T(x) = 

whether T is a linear transformation. 

Solution: Again starting with condition one, we have 

and y = 2/1 

2/2 
, determine 

T(x + y)   =   T 

T(x) + T(y) 
2si 

+ 
2j/i _. 

2:2 2/2 

2(X!+J/1) 

X2 + 2/2 

2(xi + 2/1) 

X2 + 2/2 

, and 

Condition one holds, but we must still check condition two: 

T(cx)   =   T 
I 

c 
Xl 

)- 
c2x\ 

= c 
2xi 

\ X2 J CX\ Xi 

, and 

cT(x)   =   cT 
Xi 

Xi 
= c 

2xi 

Xi 

Because condition two also holds, we say that T is a linear transformation. 

In engineering and physics, one of the most useful tools is the simplification 

of a problem. By splitting a problem up into smaller problems, large, seemingly 

unsolvable problems become a number of smaller solvable problems. The solutions to 

the smaller problems can then be combined to get a solution to the larger problem. 
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This process is based on the superposition principle and is a generalization of our two 

conditions: 

T(c1x1 + c2x2 + • • • + Cnxn) = ClT(Xl) + c2T(x2) + ■■■ + cnr(x„). 

A.     SPECIAL MATRICES 

There are a number of matrices that, because of their frequency of use and 

importance, have been given special names. These special matrices have specific useful 

properties. We start with perhaps the most important special matrix of all. 

1.      The Identity Matrix 

The first special matrix, and probably the most widely used, is the identity 

matrix. The identity matrix performs the same function as the number 1 in multipli- 

cation; la = a and 61 = 6. This matrix is denoted by I, and has ones along the main 

diagonal and zeros elsewhere. (The main diagonal elements of a matrix A are those 

elements that are indexed by a,-,-.) 

Example III.4 The matrix I e 7l4x4 is an identity matrix. 

1 = 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

When dealing with square matrices, the identity matrix is special because IA = AI = 

A. This is a special case in which matrix multiplication commutes. 

Example III. 5 Given A = 

pute IA and AI. 

3    i 
-1   8 and the identity matrix I 1   0 

0   1 
, com- 
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Solution: 

IA   = 
1   0 

0   1 

3   i 

-1   8 

l-3 + 0(-l)   l-i + 0-8 

0-3 + 1(—1)   O-i + 1-8 

3    i 

-1   8 
and 

AI 
3    i        10 3 -1 +i • 0       3-0 + i-l 3    i 

-18        0   1 —1(1) + 8-0   —1(0) + 8-1 -1   8 

Notice that IA = AI. In most cases, the dimensions of the identity matrix are inferred 

from the context of the associated matrices. 

2.      Permutation Matrices 
A second very important special matrix is a permutation matrix. This square 

matrix is denoted by P, and is very closely related to the identity matrix. PA trans- 

forms A by exchanging the rows of A. AP exchanges the columns of A. The per- 

mutation matrix transforms a matrix from Hmxn to 1Zmxn and a vector from TZn to 

71". 

Example III.6 Given P = 

Solution: 

PA = 

P exchanges the rows of A. 

Example III.7 Given P = 

pute AP. 

0 1 
1 0 

and A = 
2     6i 
1    -3 

, compute PA. 

0   1 2 6« 1 -3 

1   0 1 -3 2 6i 

" 1 0 0 1 
0 0 1 
0 1 0 

and A 
5   -10 + 8i      0 

-hi 2     6z 
\-i 1-3 

, corn- 

Solution: 

AP = 

.5-10 + 8t      0 

-hi 2    6i 

\-i 1-3 

1   0   0 

0   0   1 = 

0   1   0 

5      0 

—hi     6z 

1-i   -3 

-10 + 8i 

2 

1 
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P exchanges the columns of A. 

An important concept to grasp is that certain rows of matrix A can remain 

in the same position when computing PA. This is done by placing a one in any such 

row's main diagonal position of matrix P. Additionally, certain columns of A can 

remain in the same position when computing AP. This is done by placing a one in 

any such column's main diagonal position of matrix P. 

Example III.8 Given P 

PA. 

ro 0 11 
0 i 0 

_ i 0 0 
and A 

0    3   4 
-5    6   1 

i   1%   3 
compute matrix 

Solution: 

PA 

0   0   1 

0   1   0 

1   0   0 

0    3   4 

5    6   1 = 

i   2i   3 

i   2i   3 

-5    6   1 

0    3   4 

Since the 1 in the second row of P occupies the main diagonal position, row two of A 

remains fixed, while rows one and three are interchanged. 

3.      Orthogonal Projection Matrices 

An orthogonal projection matrix can find the components of a vector v along 

any given axis. The orthogonal projection matrix transforms a vector from 1Zn to 

lln. 

Example III.9 Given Q = 
1   0 
0   0 

and v = x   y , compute Qv. 

Solution: Qv is the component of v which lies on the x axis: 

Qv = 

Q takes v and projects it onto the x axis 

1    0 

0   0 

x 

y 

X 

0 
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Example III. 10 Given Q = 

Solution: 

10   0' 
0   1   0 and v = x   y   z 

T 
, compute Qv 

0   0   0 

1   0   0 X X 

0   1   0 y = y 

0   0   0 z 0 

Qv 

Q projects v onto the (x, y) plane. If we continue with a 4 x 4 orthogonal projection 

matrix, we could see what a four-dimensional object would look like if we projected 

the four-dimensional object into three dimensions. This is the same idea of drawing 

a three-dimensional box on a two-dimensional piece of paper. 

4.      Rotation Matrices 

A rotation matrix transforms a vector v by rotating it about the origin through 

an angle of 9 degrees. Its derivation goes beyond the scope of this text, but its utility 

merits an example. A rotation matrix transforms a vector from lZn to Tln. 

Example III. 11 Given T 

Tv. 

cos 6 
sinO 

-sin 6 
cos 9 

11, and 9 — j, compute 

Solution: 

Tv 
cos f 4 

sin 

■sin 5 4 

COS 

0 

V2 

T applied to v rotates v about the origin counter-clockwise by j radians, or 45°. 

B.     MATRIX NORMS 

Although there are many different matrix norms, we are interested in a family 

of norms called p-norms. When we found ||b||, we called it the length. The next 

question is, what is ||A||? This is not an easy question to answer. First let us look at 

Ax. When one forms the product Ax, where A € Cnxm and x € Cmxl, the result is a 

52 



vector b £ Cnxl or Ax = b. In some sense, A transforms the x into a new b that is 

a linear combination of the columns of A. It is useful to know how the norm of Ax, 

denoted ||Ax||, relates to the norm of x, denoted |[x||. 

Definition III.3 Given x € ftm, and A G TlnXm, the p-norm of A, denoted by ||A||p, 
NAxll 

is defined by max ||A||   =  ,.., F, where p represents a specific vector norm. 

The most common of these norms are the 1, 2, and oo norms, denoted by ||A||a, ||A||2 

and IIAH^ , respectively. In effect, the norm of a matrix tells us just how much 

a matrix can stretch vectors. If ||A|| < 1 then we know that the matrix A can 

transforms vectors x into shorter vectors b, i.e., A shrinks vectors. If ||A|| > 1, 

then we know the matrix A transforms some vectors x into longer vectors b, i.e., 

A stretches some vectors. The calculation of the matrix norm varies depending on 

which norm is desired. The easiest p-norm to find is the oo- norm: 

      vfc=l ) 

or equivalently, the maximum absolute row sum. The 1-norm is also easy to calculate. 

llAHi = ^B{l>* 

or equivalently, the maximum absolute column sum. 

Example III. 12 Given A = 
2 1 0 1 
1 -2 1 
0 1 -2 

compute HAId and ||A| 

Solution: |jAj[a is the maximum absolute column sum. 

||A||X = max{|-2| + |1| + 0 = 3,   |1| + |-2| + |1| = 4, 0 + |1| + |-2| = 3} . 

The maximum value of the absolute column sum is 4, therefore, |j A[ja =4. This result 

indicates that Ax might stretch x to as much as 4 times its length. The oo-norm is 

the maximum absolute row sum: 

IIAII^ = max{|-2| + |1| + 0 = 3, |1| + |-2| + |1| = 4,0 + |1| + |-2| = 3}. 
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The maximum absolute row sum is 4, therefore, || A||00 = 4. This result also indicates 

that Ax might stretch x. 

Due to the difficulty in computing the 2-norm, we leave it for another class. 

C.     THE RANGE AND NULL SPACE OF A MATRIX 

In this section we introduce two important concepts in linear algebra. 

Definition III.4 Given a matrix A £ Cnxm, the range of A, denoted by R(A), is 
given by R(A) = {y € Cn | y = Ax for some x £ Cm}. 

In effect, R(A) is the set of all linear combinations of the columns of A, and so is 

sometimes called the column space. The null space is related to the column space. 

Using the columns of A, we form a homogeneous equation, 

Xi 

Any x that satisfies the homogeneous equation is in N(A). 

Definition III.5 Given a matrix A £ CnXm, the null space of A, denoted by N(A), 
is given by N(A) = {x £ Cn | Ax = 0}. 

r        -i r               I ■ 

oi,i «1,2 «1,3 0 

«2,1 + x2 «2,2 + x3 «2,3 = 0 

03,1 03,2 «3,3 0 

Example III. 13 Given A = 
-2      6   -4 
5   -3   -2 

, compute N(A). 

Solution: Form the homogeneous vector equation: 

Xl 
-2 

+ x2 

6 
+ x3 

-4   0 

5 -3 -2 0 

By inspection, we see that any x = 

the zero vector. 

iT 

t    t    t , where t £ 71, is transformed into 
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D.     RANK 

We have already defined linear independence of vectors. In this section we will 

think of the columns of a matrix as individual vectors, and then determine the linear 

independence or linear dependence of the columns. This enables us to determine the 

rank of a matrix. We start this section with an example, to review what is meant 

when we say that the columns of a matrix are linearly independent or dependent. 

Example III. 14 Given A = 

are linearly independent. 

0 0 11 
1 0 0 
0 1 0 
0 0 1. 

, determine whether the columns of A 

Solution: We start by letting the columns of the matrix be the individual vectors 

ax = 

-1 0 0 

-1 
,a2 = 

1 
,«3 = 

0 

-1 0 1 

-1 0 _ 0 

and 84 

1 

0 

0 

1 

Now we ask whether vectors ai, a2, a3, and a4 are linearly independent or dependent. 

Using what we learned earlier, we form a linear combination of the vectors into a 

homogeneous equation c\&\ + c2a2 + e3a3 + c4a4 = 0. If the only solution to this 

equation is the trivial solution, scalars ci,c2,C3, and c4 = 0, then the vectors are 

linearly independent. If a nontrivial solution exists, then the vectors are linearly 

dependent. At this time we will determine the values for c by inspection, and ignore 

the methods for computing them. We leave that to later sections. If we rearrange the 

homogeneous equation into ciaa -+- c2a2 + c3a3 = —c4a4 and set all of the constants 

to 1, we have a: + a2 + a3 = — a*. Substituting the vectors into the homogeneous 

equation yields 
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-1 0 0 -1 

-1 
+ 

1 
+ 

0   0 

-1 0 1 0 

-1 0 0 -1 

Since -a4 can be written as a linear combination of ai,a2, and a3, the columns of 

A are linearly dependent. This looks like the homogeneous matrix equation, except 

that we have moved the fourth column to the right-hand side of the equation. We 

could have instead moved the first column to the right-hand side of the equality. 

0 0 1 1 

1 

0 
+ 

0 

1 
+ 

0 

0 
= 

1 

1 

0 0 1 1 

Again we see that the columns of A are linearly dependent, because a nontrivial 

solution to the homogeneous equation exists: C\ = c2 = c3 = c4 = 1. Since the columns 

of A can be thought of as vectors, and since the vectors are linearly dependent, then 

the columns of A are linear dependent. Notice that three vectors are necessary to 

form a linear combination of the fourth vector. This is not a coincidence. If we take 

any three columns of A and form the homogeneous equation Ciaj -f c2a2 + c3a3 = 0, 

we will find that the three columns are linearly independent. 

Now that we have reviewed what is meant by linear dependence and indepen- 

dence, we can move on to the idea of rank. 

Definition III.6 The column rank of a matrix is equal to the number of linearly 
independent columns. The row rank of a matrix is equal to the number of linearly 
independent rows. The column rank is equal to the row rank and is called the rank 
of a matrix. If the number of linearly independent columns or rows is equal to the 
smallest dimension of the matrix, then the matrix is said to have full rank. 

Theorem III.l Given A € 7£nxm,x € H, and T(x) = Ax, then the following are 

true: 
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a) rank(A) = r 

b) r < n and r < m 

c) A has r linearly independent columns 

d) A has r linearly independent rows 

e) rank(A) = rank(AT) 

f) The linearly independent columns of A span R(A.) 

g) The linearly independent rows of A span R(A ) 

Example III. 15 Given A = 

pendent rows of A. 

1 0 0 11 
0 1 0 1 
0 0 1 1 _ 

, determine the number of linearly inde- 

Solution: Notice that the fourth column is a linear combination of the first three 

'columns; i.e. col4 = coll + col2 + col3. Therefore, A has three linearly independent 

columns. This implies that rank(A) = 3, and so A also has three linearly independent 

rows. 

Example III. 16 Given A 

pendent columns of A. 

1 0 1 
1 1 0 
2 1 1 
0 -1 1 

, determine the number of linearly inde- 

Solution: Notice that the third row is a linear combination of the first two rows; 

i.e. row3 = rowl + row2. Also, the fourth row is a linear combination of the first 

two rows; i.e. row4 = rowl — row2. Therefore, A has two linearly independent rows. 

This implies that rank(A) = 2, and so A also has two linearly independent columns. 

Example III. 17 Given A 

1 5 9 13 1 
2 6 10 14 
3 7 11 15 
4 8 12 16 . 

, determine rank(A). 
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Solution: In this example, it is doubtful whether the reader could come up with a 

solution by inspection. Other methods are required to solve this problem. Therefore, 

at some point, we must shift our attention from the concept of linear independence 

to the algebraic details of finding a nontrivial solution to the homogeneous equation. 

We promise to discuss these details later. 

E.     ELEMENTARY MATRICES 

Elementary matrices are a family of special matrices that can be used to 

perform specific operations on matrices. Elementary matrices will enable us to find 

new ways to solve systems of linear equations. Each elementary matrix E performs one 

row operation on a matrix. This operation is known as an elementary row operation. 

There are three elementary row operations: row interchange, row replacement, and 

scalar multiplication of a row. We form an elementary matrix by applying one of the 

row operations to the identity matrix. 

1.      Row Interchange 
A row interchange, as its name suggests, occurs when any two rows of a matrix 

are interchanged. 

10 0 0 
0 10 0 
0 0 10 
0 0 0 1 

changes the second and fourth rows of a matrix 

Example III. 18 Given I = , form an elementary matrix which inter- 

Solution: Interchange the second and fourth rows of I to form the elementary matrix 

E = 

1 0 0 0 

0 0 0 1 

0 0 1 0 

0 1 0 0 
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Using our newly formed elementary matrix E, we can now interchange the second and 

fourth rows of any 4 x m matrix by left-multiplying that matrix by E. As we learned 

previously, E is a permutation matrix. 

Example III. 19 Given A 

EA. 

12 3 4 
5     6 7 8 
9   10 11 12 

13   14 15 16 

and E 

1 0 0 0 1 
0 0 0 1 
0 0 1 0 
0 1 0 0. 

Solution: 

EA = 

1 0 0 0 

0 0 0 1 

0 0 1 0 

0 1 0 0 _ 

12 3 4 

5     6 7 8 

9   10 11 12 

13   14 15 16 

12 3 4 

13   14 15 16 

9   10 11 12 

5     6 7 8 

Notice that E interchanges the second and fourth rows of A. 

Example 111.20 Given A = 
a    b 
c   d 

and E = 
0 1 
1 0 

, compute EA. 

Solution: 

EA 
0   1 a   b c   d 

1   0 c   d a   b 

, compute 

Notice that E interchanges the two rows of A. 

2.      Scalar Multiplication of a Row 

This operation replaces a row of a matrix with a scalar multiple of the row. 

Example III. 21 Given A = 

pute EA. 

1 2 3 4 1 1" 1 0 0 0 
5 
9 

6 
10 

7 
11 

8 
12 

and E = 
0 
0 

-2 
0 

0 
1 

0 
0 

3 14 15 16 0 0 0 1 

, com- 
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Solution: 

EA = 

1 

0 

0 

0 

0 0 0 

2 0 0 

0 1 0 

0 0 1 

12 3 4 

5     6 7 8 

9   10 11 12 

13   14 15 16 

1 2 3 4 

10 -12 -14 -16 

9 10 11 12 

13 14 15 16 

Notice that E multiplies the second row of A by —2. 

Example III. 2 2 Given A = 
3   5 

-2   7 
and E = 

4   0 
0   1 

, compute EA. 

Solution: 

EA 
4   0 3   5 12   20 

0   1 -2   7 -2     7 

Notice that E multiples the first row of A by 4. 

3.      Row Replacement 

This operation will add a scalar multiple of one row to another row. Again we 

begin with an identity matrix. 

Example III.23 Given I 

twice the third row to the first row of I. 

r i 0 0 1 
0 l 0 
0 0 1 

, form an elementary matrix which adds 

Solution: 

E = 

1 0 2 

0 1 0 

0 0 1 

Example 111.24 Given A = 
" 1 2 3 1 

4 5 6 
7 8 9 

and E = 
r i 0 2 1 

0 l 0 
0 0 i _ 

; compute EA. 
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EA 

1 0 2 1 2 3 

0 1 0 4 5 6 = 

0 0 1 7 8 9 

5 18 21 

4 5 6 

7 8 9 

Solution: 

Notice that E adds twice the third row to the first row of A. 

In each of the previous examples, the elementary matrices performed one and 

only one elementary operation. However, we can multiply many elementary matrices 

to form a single matrix, A, that will perform those same elementary row operations 

at one time. 

Example III. 2 5 Given A = 

pute EA. 

1 2 3 4 1 r   o 0 0 1 
5 
9 

6 
10 

7 
11 

8 
12 

and E = 
0 

-l 
-2 
0 

0 
1 

0 
0 

13 14 15 16 l 0 0 0 

, corn- 

Solution: 

EA 

0 

0 

-1 

1 

0 0 1 

-2 0 0 

0 1 0 

0 0 0 

12 3 4 

5     6 7 8 

9   10. 11 12 

13   14 15 16 

13 14 15 16 

10 -12 -14 -16 

8 8 8 8 

1 2 3 4 

In this example, E actually performs three elementary row operations. 

F.     EXERCISES 

1. Given T : 1l2 —* V? and T 

tion? 

x2 

Xi -x2 

0 

(x-i + x2)2 _ 

, is T a linear transforma- 
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2. Given T : ft2 —► TZ3 and T 

tion? 

x1 

X2 

3xi 

1x\ — Xi 

X2 

is T a linear transforma- 

3. Given T : ft2 

tion? 

7£3 and T 
Xi 

X2 

Xi 

xi + 4x2 

X\X2 

is T a linear transforma- 

4. Given the following matrices, compute the 1-norms. 

a) A = 

1    -3 

7      3 

5      8 

2 

-2 

0 

b) B = 

0 3   4 

8 9   1 

6 0   0 

:)C = 

1 -2 4 

2 4 0 

1 7 -2 

5. Given the following matrices, compute the oo-norms. 

a) A 

1 -3 2 

7 3 -2 

5 8 0 

b) B 

0 3 4 

8 9 1 

6 0 0 

c) C 

1 -2 4 

2 4 0 

1 7 -2 

6. Given the following matrices, determine whether they are elementary matrices 

or not. If they are elementary matrices, state which operation they perform on a 

compatibly-sized matrix. 

a) Ei 
1      0 

0   -4 
b)E2 = 

1   0 

1   0 
c)E3 = 

1 0   0 

0 0   1 

0 1   0 
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d)E4 

1   0 -3 

0   1 0 

0   0 1 

e)E5 

1 0 0 

1 0 1 

0 0 1 

f)E6 

2 0 0 

0 1 0 

0 0 1 

7. Given Ei 

0   0   1 

0   1   0 ,E2 = 

1   0   0 

1 1 0 

0 1 0 

0 0 1 

,and E3 = 

1 0   0 

0 -2   0 

0 0   1 

a) What elementary row operations do the elementary matrices Ei,E2, and E3 

perform? 

b) Compute E1E2E3. 

c) Compute E3E2Ei. 

d) Are the solutions to parts b and c equivalent? Why or why not? 

-3 2 1 0 

0 1 0 -4 

8. Given A = 0 0 2 6 

0 0 0 5 

0 0 0 0 

a) Are the columns linearly independent, or linearly dependent? 

b) Are the rows linearly independent, or linearly dependent? 

c) How many linearly independent columns in A? 

d) How many linearly independent rows in A? 

e) What is the rank(A)? 
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9. Given A = 

-1 

3 

2 

4 

2 0 

-7 2 

-5 2 

-9 2 

4 5 

0 1 

4 6 

-4 -4 

-3 

4 

1 

7 

a) What is the rank(A)? 

b) Compute the solution set x to the equation Ax = 0. 
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IV.        SYSTEMS OF LINEAR EQUATIONS 
AND SOLVING LINEAR SYSTEMS 

The first step in solving any real-world problem mathematically is defining 

the variables and the relationships between the variables. The variables might be, 

for example, time, distance, speed, costs, materials or profit. The relationships might 

be known formulas such as velocity = aipance. Once we have defined the variables 

and we have formed equations using the relationships which describe the problem, 

we can turn to mathematics to solve the problem. The problems we will be dealing 

with in this text are linear systems. There are many ways to solve systems of linear 

equations. One method for solving them is the method of substitution. This is the 

most fundamental of all the methods. It requires that we solve for a single variable 

in one equation and then substitute the result into the other equations. This is a 

standard method for two or three variables, but for real-world problems with more 

then three variables substitution is, at best, cumbersome. In this we will look at three 

methods for solving linear systems: Gaussian elimination, matrix inversion, and LU 

decomposition. Each has its advantages and disadvantages. Additionally, there are 

several ways of finding the LU decomposition of a matrix. We will discuss a "cooke- 

book" form of LU decomposition, and another form which takes advantage of the 

properties of matrix block multiplication. This second form is, initially, slightly more 

difficult. However, it is actually a simpler form when using computers to perform LU 

decomposition on large systems. We will look at the errors and costs of the three 

methods, in terms of the number of computer computations required and the time 

required to perform the calculation. 

A.     SYSTEMS OF LINEAR EQUATIONS 

A linear equation is an equation which can be written in the form 

ai^i + a2x2 + ■ ■ • + anxn = b, 
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where the coefficients a; and b are real constants and the X{ are variables, or unknowns. 

The vector x = 

equation. 

X\    x2 xr, is a solution if and only if it satisfies the linear 

Definition IV. 1 An equation of the form a-^xx + a2x2 + • • • + anxn = b is linear if 
the following properties hold: 

1. Every variable occurs only in the first power. 

2. There are no products of variables. 

3. No variables are arguments for radical, exponential, logarithmic or trigono- 

metric functions. 

Example IV. 1 Given the following equations, determine whether they are linear or 
nonlinear. If nonlinear, state why. 

a) xxx2 + 3^2 = 1 

b) 2x-i + 3x2 = sin7r 

c) sinrci + x2 = 3 

d) v^xi + f x2 = 0 

e) xx + {x2f = 5 

Solution: 

a) Nonlinear, because x\x2 is a product of two variables. 

b) Linear. Remember sin IT is a constant. 

c) Nonlinear, because x\ is the argument of trigonometric function. 

d) Linear. 

e) Nonlinear, because x2 occurs to a power higher than 1. 

The linear equation 3xi — x2 = 6, represents a line in V?   and has as one 
-iT 

2   0      • This solution is not unique. In other words, solution x = xx   x2 

there are other values for x\ and x2 which satisfy the linear equation. Can you find 
-iT 

them? Try x = 3   3 
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We can form a system of linear equations, which might describe a real world 

problem, using several linear equations. 

«1,1^1+     «1,2^2+      1-     CLlmXn =      &1 

02,121+   «2,2^2+     h    a2mxn =    b2 

onl^l+      0,n2X2-\- "T     önm3Jn 

By making a slight modification, the above system becomes the vector equation, 

X\ 

01,1 «1,2 

02,1 

+ x2 

02,2 

önl ön2 

- * 
a\m 61 

Q-lm b2 

T Xn 
z= 

■ 

anm K 

When a system of linear equations is written in the vector form, we can more easily 

discuss the geometric interpretation of adding and subtracting vectors. This form 

is also helpful when discussing linear combinations of vectors. The matrix equation 

Ax = b is another way of representing a system of linear equations and has its own 

desirable qualities. 

If we make another slight modification to the system of linear equations we 

get the matrix equation, 

«1,1     «1,2 

a2,l     a2,2 

Olm Xl 

x2 

h 
b2 

an\    an2    • • *    an7n xn On 

This form allows us to perform matrix algebra on the system of linear equations in 

order to determine the solution. A disadvantage of this form as opposed to the vector 
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form is that our geometric interpretation of vectors and the idea of linear combinations 

of vectors seems lost. If we remember to think of columns as vectors, then our 

interpretations and ideas concerning vectors will also hold true for the columns of 

A in the matrix equation. Taking this a step further, our interpretations and ideas 

concerning vectors can be extended to the system of linear equations. We can take 

this step since the vector equation, matrix equation and the system of linear equations 

are really different ways of representing the same thing. The different forms help us 

discuss different ideas. 

Definition IV.2 Given the system of linear equations of the form, 

01,1^1+   01,2^2+    1-   a,\mxn =    bi 

02,1^1+   02,2^2+   • • •+   a2mxn =    b2 

anlxi+    an2x2+    • ■ ■+   anmxn =   bn, 

the matrix of coefficients is 

• 
«1,1 0-1,2     ■ *     a\m 

«2,1 0-2,2     • •     0,2m 

«nl On2      - Onm 

and the augmented matrix is 

«1,1    ai,2    • 

02,1     «2,2      - 

aim    |    h 

a2r, 

Oni    on2    •••   anm    I    bn 
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Notice that the coefficients of the system of linear equations form the matrix of 

coefficients. When we append the constants from the right-hand side of the system 

of linear equations to the matrix of coefficients, we get the augmented matrix. 

Before we demonstrate how to solve systems of linear equations, we must first 

define some terms which describe our system. 

Definition IV.3 If the system has more variables than equations (m > n), then 
the system is said to be underdetermined. If the system has fewer variables than 
equations (m < n), then the system is said to be overdetermined. 

Example IV.2 Given the following system of linear equations, determine whether 
the system is underdetermined or overdetermined. 

xi   +     x2   +     x3   =   3 
2a?i    +   2x2   +   2x3   =   1 

Solution: The system is underdetermined, since there are more variables than equa- 

tions. 

Example IV.3 Given the following system of linear equations, determine whether 
the system is underdetermined or overdetermined. 

Xl + X2  = = 1 
2xx + 2x2 = = 2 
3xi + 3x2  = = 3 
4xi + 4x2 = = 4 
5xi + 5x2 = = 5 
6xa + 6x2 = = 6 

Solution: The system is overdetermined, since there are more equations than vari- 

ables. Regardless of whether a system is overdetermined or underdetermined, a solu- 

tion is not guaranteed. 

Definition IV.4 If a solution to a system of linear equations exists, then the system 
is consistent. If no solutions exist, then the system is inconsistent. 

Example IV.4 Given Oxi + 0x2 = 2, solve for x. 
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Solution: The equation is inconsistent. Whatever values are chosen for the variables, 

the left-hand side of the equality is always 0 while the right-hand side is 2. 

We have shown what a linear system is and the different ways to represent it. 

We have also shown that a system may or may not have a solution. Now let's move 

on to finding a solution, if it exists. First, we start with the method of substitution. 

This method is perhaps the most labor-intensive of all the methods we will show. 

Example IV.5 Given the following system of linear equations, determine a solution 
by the method of substitution. 

2a:i   +   3x2   =   6 
xi   +     x2   =   2 

Solution: Solve for X\ in the first equation: 

2xi + 3x2 = 6 

2xi = 6- Sx2 

X\ = 3- 
3 

2X2- 

he second equation L: 

Xi +x2 = 2 

,     3 S--x2 f x2 = 2 

1 

2X2 = -1 

x2 = 2. 

Substitute x2 = 2 into either of the original equations: 

x1 + 2   =   2 

The solution to the system is x = 

xx   =   0. 

0   2 

As the numbers of equations and variables increase, the method of substitution can 

become overwhelming. Imagine writing xio in terms of xg, x&, x7, x&, x5, x4, x$, x2, and 

x-y. This is obviously not the most efficient method. 
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B.     GAUSSIAN ELIMINATION 

Gaussian elimination is difficult to explain in plain English, so we will use 

examples to demonstrate the process. First lets look at a system of linear equations 

and try eliminating variables. 

Example IV.6 Given the following system of linear equations, compute the solution 
x. 

2xi   +   4:X2   —   2x3   =   -4 
Sxi   +     x2   —   2x3   =   —5 
9xi   +   6x2   —   6x3   =      3 

Solution: Start by dividing the first equation by 2 and the last equation by 3. This 

gives 

Xi   +   2x2   —   lx3   =   —2 

3zi   +     x2   —   2x3   =   —5 

3xi   +   2x2   —   2x3   =     1. 

Eliminate Si by multiplying the first equation by —3 and adding it to the other 

equations. This gives 

Ixi   +   2x2    —   xs   —   —2 

— 5x2   +   x3   =      1 

- 4x2   +   x3   =     7. 

Eliminate x2 by multiplying the second equation by — |   and adding it to the last 

equation, which gives us a system easily solved: 

lxa    +   2x2    — x3   =   -2 

-   5x2   + x3   =      1 

+ 1-3      =      f • 

We can perform this process of eliminating variables on an augmented matrix 

using elementary row operations. This process is known as Gaussian elimination. 

The following are elementary row operations. 

a) Scaling: Multiplication of a row by a scalar. 

b) Row interchange: Interchange of two rows. 
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c) Row replacement: Addition of a scalar multiple of one row to another row. 

The previous system of linear equations can be written as 

1 2 -1 

0 -5 1 

0 0 l 

-2 

1 

31 
5 

and is said to be in row echelon form. An augmented matrix is in row echelon form 

when all of the following are true: 

a) Any row or rows consisting entirely of zeros occurs as the last row or rows. 

b) The leading non-zero entry of any row, known as the pivot, is to the left of 

all pivots in subsequent rows. 

c) All entries below pivots are zero. 

Example IV.7 Given A = 

reduce it to row echelon form 

6 4 
3 1 
9   6 

-2 
-2 
3 

-4 
-5 
6 

, use elementary row operations to 

Solution: Replace row2 by — |rowl + row2 and replace row3 by -|rowl + row3. 

This gives 

6 4-2 

0 -1 -1 

0      0      6 

-4 

-3 

12 

The augmented matrix is now in row echelon form and is itself a system of linear 

equations that can be expressed as 

6^!    +   4x2   —   2x3   =   —4 

—     x2   —     x3   =   — 3 

6x3   =   12. 

Definition IV.5 If two augmented matrices have the same solution set, then they 
are said to be equivalent. 
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Theorem IV.1 If any elementary row operation is performed on a augmented matrix 
A € 7ZnXm, then the resulting augmented matrix has the same solution set as the 
original augmented matrix. 

Using this theorem, we can verify that our row echelon form matrix from the previous 

example is equivalent to the original matrix. In order to determine the solution set, 

we will solve for the variable in the last row and then substitute it into the row above 

to solve for the next variable and repeat. This process is called back-substitution for 

obvious reasons. 

6      4   -2   |   -4 
0   -1   -1   I   -3 
0      0      6   |    12 

back-substitution to compute the solution set. 

Example IV.8 Given A from the previous example, use 

Solution: Writing this augmented matrix as a system of linear equations yields 

6x!   +   4x2   -   2x3   =   -4 

—     x2   —     x3   =   —3 

6x3   =   12- 

Starting with the last equation, solve for x3, then use repeated back-substitution to 

solve for x2 and x\. Therefore, from the equation 6x3   =    12, we have x3   =   2. 

Back substitute x3 = 2 into the second equation: 

—x2 — £3   =   —3 

-X2-2   =   -3 

-x2   =   -3 + 2 

x2   =    1. 

Back substitute x2 = 1 and x3 = 2 into the first equation: 

6x1 + 4x2 - 2x3   =   -4 

6xi+4(l)-2(2)   =   -4 

6x1    =   -4-4 + 4 
2 

xi   -   --. 
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Therefore, the solution is x = i    1   2 Notice that this solution is unique. 

Also, since a solution does exist, the system of linear equations is consistent. If the 

solution is correct, each equation should be satisfied simultaneously as follows: 

6xj + 4x2 - 2x3 = 6(-|) + 4(1) - 2(2) = -4 

3s! + x2 - 2^3 = 3(-|) + 1 - 2(2) = -5 

9x!   +   6x2   +   3x3   =   9(-|)   +   6(1)   +   3(2)   =     6. 

Therefore, x is the solution to the original system. 

Example IV.9 Given A = 

duce it to row echelon form. 

i        -2 
1 - i   2-Zi 

3 
0 

, use Gaussian elimination to re- 

Solution: Multiply rowl by -i and row2 by 1 + i. This makes the elements in the 

first column of A real. The result is 

1 2i 

2 5-i 

-Si 

0 

Using Gaussian elimination, replace row2 with -2rowl + row2, which yields the row 

echelon form 

Example IV. 10 Given A 

pute the solution set. 

1         2i   | -3i 

0   5-5i   | 6i 

1          2»    | -3£ 
0   5-5t   1 6^ ; use back-substitution to corn- 

Solution: Multiply row2 by 5 + 5i to make the element in the second column, second 

row real. This gives 

A = 
1    2i   | -Si 

0   50   I   —30 + 30i 

Therefore, from the second row, we have 50x2   =   -30 + 30z, which yields x2 
-3+3i 
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Back substitute Xi —    3j"3t into the second equation: 

X\ + 2ix2   =   —3i 

ft./-3 + 3i\ 
X-L + Zll I     =    — 3t 

6 — 9* 
Xi     = 

6-9t     -3+3; 
5 5 

Therefore, the solution is x = 

By applying a few more elementary row operations to an augmented matrix, 

we can compute the solution directly instead of using back-substitution. 

Example IV. 11 Given A 

Solution: Divide row3 by 6 to obtain 

'6      4 -2   | -4 
0   -1 -1   | -3 

. o    o 6   1 12 

) obtain 

6      4 -2 -4 

0   -1 -1 -3 

0      0 1 2 

, compute the solution set. 

Replace row2 by row3 + row2 and replace rowl by 2row3 + rowl; this yields 

6 4 0 | 0 

0 -1 0 | -1 

0      0   1    |      2 

Replace rowl by 4row2 + rowl then replace row2 by —row2 to get 

6 0 0|-4 

0 1 0 | 1 

0   0   11      2 

Replace rowl by |rowl to get 

1 0 0 

0 1 0 

0   0   1 

2 
3 

1 

2 
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Solving for the variables directly yields x\ = —3,^2 = 1, and x3 = 2, or x = 

—1 l 2 • The elimination process that we performed is called Gauss-Jordan 

elimination. It puts the augmented matrix into reduced row echelon form so that the 

solution can be found by directly solving for each variable vice using back-substitution. 

An augmented matrix is in reduced row echelon form when all of the following are 

true: 

a) A is in row-echelon form. 

b) All pivots are 1. 

c) All entries above the pivots are zero. 

We have solved systems of linear equations by method of substitution, and 

their associated augmented matrices by Gaussian and Gauss-Jordan elimination. But 

are these solutions valid in the vector and matrix equation forms? Lets look at two 

examples using the following system of linear equations, that shows the solution set 

to the system is also valid for the equivalent vector and matrix equations. 

6x1 + 4x2 - 2x3 = -4 

3xi + x2 — 2x3 = —5 

9xi   +   6x2   +   3x3   =      6 

r lT 

As shown previously, the solution to this system is x =     — |    1    2 

Example IV.12 Given the vector equation Xi 

determine whether x = [ — §    1    2 I    is a solution. 

Solution: Plugging x into the vector equation yields 

6 4 -2 -4 
3 +X2 1 +x3 -2 = -5 
9 6 3 6 

We see that x is a solution. 

6 4 -2 -4 

3 + 1 1 + 2 -2 = -5 

9 6 3 6 
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Example IV.13 Given the matrix equation 
6   4 -2 " " Xi ' " -4 " 
3   1 -2 X2 = -5 
9   6 3 . X3 . 6 

, deter- 

mine whether x = ■I   1   2 is a solution. 

Solution: Plugging x into the matrix equation yields 

6   4 -2 2 
3 -4 

3   1 -2 1 = -5 

9   6 3 2 6 

We see that x is a solution. 

Now that we can solve a system of linear equations, we define some terms 

which apply to a reduced augmented matrix. 

Definition IV.6 Given an augmented matrix in row echelon or reduced row eche- 
lon form, the variables which correspond to pivots are called pivot variables. The 
remaining variables are called free variables, and can take on real parametric values. 

Definition IV.7 The set of all vectors x that simultaneously satisfies all equations 
in a system of linear equations is said to be the solution set of the system. 

Example IV.14 Given the following augmented matrix in row echelon form, deter- 
mine the pivot variables, free variables and the solution set. 

1   3 -2   0 2   0 0 
0   0 1   2 0   3 4 
0   0 0   0 0   1 l 

3 
A = 

00      0   0   0   0   |   0 . 

Solution: The variables £1,2:3, and xe are pivot variables, since they occupy the 

leading non-zero entry of rows 1,2, and 3. The remaining variables 0:2, £4, and £5 

are free variables. In order to perform back-substitution on the augmented matrix, 

we must first set the free variables £2,2:4, and £5 equal to some parametric values. 

We will use r, 5, and t € TZ, respectively. Then, we can use back-substitution to 

solve for the pivot variables in terms of the free variables. The last row, because it 
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consists entirely of zeros, adds no information. Therefore, starting with row three, 

we directly solve for x6, which yields x& = \. Substitute x6 = § into row2, and make 

the parametric substitutions x4 = s and x5 = t, which yields 

x3 + 2s + Ot + 3(-)   =   4 

X3 =   4 - 2s - 1 = 3 - 2s. 

Substitute x& = ^,x5 t, x4 = s, x3 = 3 — 2s, and x2 = r into rowl and solve for x\ 

1 
z1 + 3r-2(3-2s) + 0s + 2i + 0-   =   0 

Xl   =   -3r + 6-4s-2i = 6-3r-4s-2i. 

The solution set is then x = 
iT 

where r, s, 6-3r-4s-2i r 3 - 2s s t | 

and t 6 71. By assigning the parameters r,s, and t different values, we can find 

infinitely many solutions to the system. Note that because a solution exists, the 

system is consistent. 

Example IV. 15 Given the following augmented matrix in row echelon form, com- 
pute the solution set. 

1   3   -2   2   |   0 " 
0   5      1   0   I   4 
0   0   -3   0   I   3 
0   0      0   6   I   2 

Solution:  x1,x2,x3, and x4 are pivot variables.  This system has no free variables. 
r 1T 

Using back-substitution, we find that x =      ||    |    -1    |      •   Because a solution 

exists, the system is consistent.  Also, there are no parametric values, therefore the 

solution is unique. 

Example IV.16 Given the following augmented matrix in row echelon form, deter- 
mine the solution set. 

A = 

1 3 -2 0 2 0 
0 0 1 2 0 3 
0 0 0 0 0 1 
0 0 0 0 0 0 

0 
4 
l 
3 
2 
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Solution: xi,X3, and xe are pivot variables and X2,x4, and x$ are free variables. 

But, in the last row we have Oxi + 0x2 + Oa^ + 0z4 + 0x5 + 0a;6 = 2, which means that 

no solution exists, and therefore the system is inconsistent. 

In previous examples we saw systems with no free variables, which led to a 

unique solution. We also saw systems with free variables, which led to either an 

infinite number of solutions or no solutions. 

C.     EXISTENCE AND UNIQUENESS OF A SOLUTION 

In the previous section we reduced the augmented matrices into their row eche- 

lon or reduced row echelon form. Then we solved the system using back-substitution. 

However, a solution did not always exist. We can determine whether a solution exists 

or not by looking at the last rows of a row echelon matrix or a reduced row echelon 

matrix. If a solution does indeed exist, we can also determine whether it is unique or 

one of infinitely many. Recall that if a system of linear equations has any equations 

of the form 

Oxi + 0s2 + • • • + 0xn = b, b^O, 

then the system of linear equations is inconsistent. However, the above equation may 

not appear in the augmented matrix until after Gaussian elimination is complete and 

the augmented matrix is in row echelon or reduced row echelon form. 

Example IV. 17 Given A 
1   0   0   I   -| 

-2   1   0   I      I 
1    1   0   I  ■   |j 

; determine the solution set. 

Solution: After performing Gaussian elimination, the row echelon form is 

1 0 0 

0 1 0 

0   0   0 

4 
"6 

1 

2 
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In the last row we have the equation 0xt + 0x2 + 0x3 = 2. No matter what values 

we choose for xt,x2, and x3, the equation cannot be satisfied. Therefore, no solution 

exists to the system. 

Example IV.18 Given A = 
7   0-3 
7   9      3 

-7   0      0 

-6 
3 
2 

, determine the solution set. 

Solution: After performing Gaussian elimination, the row echelon form is 

7 0-3 

0 9 0 

0   0      3 

-6 

-3 

8 

This augmented matrix does not contain any rows of the form Ozi + 0x2 -\ h 0xn = 

b b 4" 0. Therefore, a solution exists, and we can solve for each pivot variable using 

back-substitution.   Notice that the solution x = 
~3      3 

is unique and that 

the number of pivot variables is equal to the number of equations. 

Example IV.19 G lven 
9 9 
0 3 
9   12 

-6 
-6 
-12 

-2 
5 
3 

; determine the solution set. 

Solution: After performing Gaussian elimination, the row echelon form is 

9 6 0 

0 3-6 

0   0      0 

-7 

5 

0 

This augmented matrix does not contain any rows of the form Oxi -f 0x2 H h 0zn = 

b, b ^ 0. Therefore, a solution exists. Notice that there are two pivot variables and 

one free variable. If we let x3 be the parametric value t, then back substitution yields 
r 1T 

the solution set x =     _1I±1M.    5±§i    t      ? where t E 11. Notice that there are fewer 
9 o 

pivot variables than equations. 

Let's summarize what we have just learned from these examples.  Given the 

row echelon or reduced row echelon form of the augmented matrix, if there is an 
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inconsistent row, then the system has no solution. If the number of pivot variables 

is equal to the number of equations, then the solution is unique. If there are free 

variables, then there are infinitely many solutions. 

If the right-hand column of an augmented matrix is all zeros, then the system 

is said to be homogeneous. If the right-hand side is non-zero, then the system is said 

to be non-homogeneous. The zero vector, or trivial solution, is always a solution to 

the homogeneous system. A non-trivial solution may or may not exist. 

Example IV.20 Given the following homogeneous, augmented matrix in row eche- 
lon form,  determine the solution set. 

A = 

-13-202      0   |0 " 
0   0-120      3   |0 
0   0      0   0   0   -1   |0 
0   0      0   0   0      0    0 
0   0      0   0   0      0    0 
0   0      0   0   0      0    0. 

A has the trivial solution x = 0   0   0   0   0   0 

There are three pivot variables, and three free variables which means we can find a 

non-trivial solution. As before, we set the free variables equal to parameters r, s, and 

t € TZ. Then we use back-substitution to solve for the pivot variables, which yields 

x=     3r-4s   r   2s+ t   s   t   0 

D.     INVERSE OF A MATRIX 

Repeated Gaussian elimination on a large matrix is inefficient in terms of the 

number of computer computations. Remember that our augmented matrix comes 

from some real-world problem with potentially hundreds or thousands of variables. 

Therefore, repeated Gaussian elimination is not the method of choice for solving 

systems of linear equations. Let's build a better mousetrap using the inverse of a 

matrix. 

So far we have looked at addition, subtraction and multiplication of matrices. 

The obvious question now, is what about division? After all, we have developed all 
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the other basic algebraic operations, and division of matrices is certainly one of them. 

Unfortunately, there is no natural way to talk about division of matrices. To get a 

better understanding, we need to go back to some very basic notions about algebraic 

operations, and how these basic operations work. 

Addition and subtraction are natural concepts. We see them in our everyday 

life whenever we count. Multiplication is artificial, it is really just a quick way to 

perform repeated addition. Division is also artificial and comes from the need to 

solve linear equations like ax = b given that you know the scalars a and b. In fact, 

you do not have to know general division to solve this problem, provided you know 

how to compute a-1. The reciprocal of a, also known as the multiplicative inverse, 

enables us to solve linear equations using multiplication; x = a~lb. 

Example IV.21 Given 2x = 6, solve for x. 

Solution: Multiply both sides of the equation by the multiplicative inverse |,which 

yields x = 3. 

Definition IV.8 Let A,B e Knxn. If AB = BA = I, we say that B is the multi- 
plicative inverse of A, denoted B = A-1. 

Unfortunately, there are some difficulties. First of all, since we want A-1 A = 

A A-1, it is clear that only square matrices can have inverses. 

Definition P7.9 A matrix is nonsingular, or invertible, if it has an inverse, and is 
singular if it does not have an inverse. 

At this point in the text, it is only important to understand what an inverse is, vice 

how to find the inverse of a matrix. Later we will learn how to find the inverse of a 

matrix if it exists. 

We can solve the matrix equation Ax = b by left-multiplying the equation by 

A"1: 
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A_1Ax   =   A-1b 

Ix   =   A^b 

x   =   A_1b. 

Now we need to find A-1. We've already shown how to find the inverse of a scalar. 

Since only square matrices have inverses, the next obvious step is to find the inverse 

of a 2 x 2 matrix. If A = 

A~' = 

a   b 

c   d 
, then we can use the formula: 

1 
ad — be 

d   -b 

-c      a 
provided ad— bc^ 0. 

Notice that if ad — be = 0, then A 1 does not exist. 

Example IV.22 Given A= 

Solution: 

2   -1 
5      3 

A-1 = 
6 + 5 

; compute A 

3   1 

-5   2 

-l 

_3_ 1_ 
11 11 

_5_ _2_ 
"ll 11 

This is easily verified: 

A_1A   = 

AA"1   = 

3         1 
11       11 2 -1 1 0 
5        2 

11      11 
5 3 0 1 

2   -1 3 
11 

l 
li 1 0 

5      3 5 
11 

2 
11 0 1 

= I and 

= 1. 

For matrices larger than 2 x 2, we will use Gauss-Jordan elimination. Let's show 

why this will work using elementary row replacement matrices to reduce an invertible 

matrix A to the identity matrix: 
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Efc- • -E3E2EXA = I 

(It can be shown that this is possible whenever A-1exists.) 

Left multiplying the matrix equation by E^- • -E3E2Ei, we have 

EA-•-EsEaExAx   =   E*-•-EsEaEjb 

Ix   =   Er--E3E2E1b 

x   =   Efc- • •E3E2E1b. 

Solving Ax = b using the inverse gives the matrix equation x = A_1b. Substituting 

x = Efc- • •E3E2E1b into the matrix equation gives Ek- • -E3E2Eib = A_1b. Therefore, 

assuming b ^ 0, A-1 = E*- • -E3E2Ei. Elementary matrices are cumbersome, so 

instead we will use Gauss-Jordan elimination to find the inverse of A. This is done as 

follows: Place the identity matrix to the right of A, to form a new matrix 

«1,1    ai,2    • • ■    aim    |    1    0    • • •    0 

«2,1    02,2    • • •    a2m    |    0   1    • • •    0 

Oral      °n2      * - '     anm     |     0     0     • • •     1 

Now perform Gauss-Jordan elimination on the entire matrix. The product of the ele- 

mentary matrices is stored in the right-hand portion of the new matrix, [I|E^- • -E3E2Ei] 

By the preceeding remarks, the matrix on the right is A-1. 

Example IV.23 Given A ; compute A 1. 
4-2 6 
2 0-4 
2      0      2 

Solution: Form a new matrix using A and  I, and then perform Gauss-Jordan elim- 

ination: 

%    -2       6 

2 

2 

0 

0 

-4 

2 

1 0 0 

0 1 0 

0 0 1 
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Replace row2 by — |rowl + row2 and replace row3 by — |rowl + row3, which gives 

4 -2 6   1 1   0   0 

0 1 -7   I -I i o 
0 1 -1   | -1   0   1_ 

Replace row3 by — row2 + row3, which gives 

4 -2 6   1 1 0   0 

0 1 -7   I l 
2 1   0 

0 0 6   1 0 -1  1 

Replace row3 by |row3, replace row2 by 7row3 + row2 and replace rowl by — 6row3 

+ rowl, which gives 

4 -2 0 | 1 

0 1 0 | -I 

0      Oil 

1  -1 

o -I 

Replace rowl by 2row2 + rowl and replace rowl by |rowl, which gives 

0 1 0 0 

0 1 0 

0   0   1 

I 
"2 

0 

The inverse matrix is 

A~2 = 

i 
6 

-1 
6 

0   =1 

1 1 
6 3 

I 1 
"6 6 

1 1 
6 6 

Example IV.24 Given the following matrix, compute A 1. 

3 0 -3 9 
2 4 0 -1 
0 -1 6 4 
7 8 -3 6 
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Solution: In order to simplify some of the calculations, ensure that each pivot is 1. 

3 0 -3 9 1 0 0 0 1 0 -1 3 1 o 0 0 

2 4 0 -1 0 1 0 0 0 4 2 -7 ¥ i 0 0 

0 -1 6 4 0 0 1 0 0 -1 6 4 0 0 1 0 

7 8 -3 6 0 0 0 1 0 8 4 -15 ¥ o 0 1 

1 0 -1 

0 1 1 
2 

0 

0 

0 

0 

13 
2 

0 

-7 
4 

9 
4 

1 
3 

-1 
6 

-1 
6 

0 -1 -1 

0 0 0 

i o  0 4 

\ i o 
2 0 1 

1 0 -1 

0 1 1 
2 

0 0 1 

0 0 0 

-7 
4 

18 
52 

1 
3 

-1 
6 

-2 
78 

1 
4 

_2_ 
52 

0 

0 

_2_ 
13 

1   1 

0 

0 

0 

-1 

1 0 -1 0 —» 
3 -6 0 

0 1 1 
2 0 19 

12 
15 
4 0 

0 0 1 0 -58 
156 

-34 
52 

2 
13 

0 0 0 1 1 2 0 

-3 

-7 
4 

18 
52 

1 0 -1 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

-8 
3 -6 0 3 

276 
156 

212 
52 

-2 
26 

-100 
52 

-58 
156 

-34 
52 

2 
13 

18 
52 

10 0 0 -474 
156 

0 0 0 1 

156 

1 

-346 
52 

212 
52 oioo    g 

ooio   — — -34 
52 

_2_ 
13 

-2 
26 

2_ 
13 

174 
52 

-100 
52 

18 
52 

0  -1 

We have combined a few of the steps to save space. During the elimination process 

we can perform row replacements and scalar multiplication only. Row exchanges 

require permutation matrices. In order to maintain simplicity we will not perform 

row exchanges. 
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E.     TRIANGULAR SYSTEMS 

Triangular systems have a very useful form. We have already shown how this 

form can be utilized to solve systems of linear equations. That is, every time we 

reduce our augmented matrix into its row echelon or reduced row echelon form, we 

have reduced it to a triangular matrix. In the next section, triangular matrices will 

be used often when performing back-substitution and forward elimination. 

Definition IV. 10 In an upper triangular matrix, all of the entries below the main 
diagonal are zero. 

Example IV.25 A is an upper triangular matrix: 

A = 

2 -1 0 5 3 1 
0 7 3 0 8 -6 
0 0 0 -1 6 4 
0 0 0 0 3 2 

Definition IV. 11 In a lower triangular matrix, all of the entries above the main 
diagonal are zero. 

Example IV.26 A is a lower triangular matrix: 

A = 

1 0 0   0 o 
5 2 0   0 0 
3 0 -4   0 0 
2 -5 9   0 o 

F.     LU DECOMPOSITION 

LU decomposition is another method used to solve Ax = b. In real-world 

problems, b may change. If Gaussian elimination is used, it would need to be repeated 

for each new b. However, LU decomposition allows us to change b without repeating 

Gaussian elimination. First we will show how to solve LUx = b. Then we will discuss 

how to find L and U. 

Let A = LU, where L is a lower triangular matrix and U is an upper triangular 

matrix.   Then the matrix equation becomes LUx = b. In this form we can find 
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a solution by performing a simple forward elimination and then an equally simple 

back-substitution. First we let Ux = z, which gives 

Ax = LUx = Lz = b. 

Since L is lower triangular, we can use forward elimination to solve for z, and then 

perform back-substitution on Ux = z. If b changes, we will have to repeat the forward 

elimination and back-substitution using the LU we have already found. If b changes 

for any reason in the augmented matrix we will have to repeat Gaussian elimination 

and back-substitution. After a few homework exercises you will agree that forward 

elimination is less costly than Gaussian elimination in terms of computations and 

time. Now all we have to do is find a L and a U which satisfy A = LU. When we 

performed Gaussian elimination on the augmented matrix, the result was an upper 

triangular system. Then we used back-substitution to solve the system. Here, we will 

use Gaussian elimination on A, instead of on the augmented matrix. 

Example IV.27 Given A = 
2 
1 

-3 
0 

1 
2 

use both Gaussian elimination and 

LU   decomposition to compute the solution set. 

Solution: Beginning with Gaussian elimination, replace row2 by —|rowl + row2, 

which gives 

2   -3 

0      I 
Starting with the last equation, solve for x2, then use back-substitution to solve for 

xi. From the equation   \x2   -   f, we get x2   =   1. We now substitute x2 = 1 into 

the first equation: 

2xi-3(l)   =   1 

2xi    =   4 

x\   =   2. 
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-\T 
Therefore, x =     2    1 

Now we begin the LU decomposition by performing Gaussian elimination on A to get 

an upper triangular matrix: 

U = 
2 

0 

We now need a lower triangular matrix so that LU = A, so let L = 
1   0 

i   1 
(It is 

easy to verify that LU = A.) 

Use forward-elimination on the augmented matrix to solve for z in Lz = b, 

1    0 

\    1 

1 

2 

Starting with the first row, solve for zj, then use forward-elimination to solve for z2 

in the second row. Therefore, from the first row, Xl = 1. Forward-eliminate Xi by 

substituting x\ = 1 into the second row: 

|(l) + *2 

X2    =    -- 

Therefore, x = 1 

Use back-substitution on the augmented matrix to solve for x in Ux = z, 

2   -3 

0       2 

Starting with the second equation, solve for z2, then use back-substitution to solve 

for xi. Therefore, from the equation |a;2 = |, we nave ^2 = 1- Back-substitute 

z2 = 1 into the first equation: 
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2^a — 3(1) = 1 

xi   =   2. 

Therefore, x = 1   2 
2 

T 
. Now let's verify that the L we chose satisfies LU = A. 

LU = 
1    0 

\    1. 

2   -3 
= 

2   -3 

1      0 
= A. 

Example IV.28 Given A = 
"16   4" 

2   4   4 ,b = ' 1   2   -l' T,L = 
1 0   0" 
2 1   0 

-12   5 -1   -1   1 
" 1       6      4 ' 

and U = 0   -8   -4 
0      0      5 

, compute the solution set to Ax = b  using the LU decom- 

position A . = LU 

Solution: Solve for z in Lz = b, which gives z =     10   0 

Solve for x in Ux = z, which gives x =     10   0 

Verify the solution: 

iT 

1   6   4 1 1 

2   4   4 0 = 2 

1    2   5 0 -1 

Ax 

Therefore, our solution is correct. 

We get U for free by performing Gaussian elimination on A. But we still need 

to find an L. Using elementary matrices, we can find a method for building the matrix 

L. We use elementary matrices to perform Gaussian elimination on A in order to find 

a U = Efc- • -EsEsEjA. We then left-multiply Ax = b by Ek- ■ -EsE^. This yields 

Efc- • -EsE2EiAx   =   Ek* • -EsE2Eib 

Ux   =   Ef •-EsEaEib. 
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Using inverses, we solve for b: 

[Efc. • •E3E2E1]-1Ux = b. 

This last equation should look familiar. It is simply LUx = b. So let L = [E&- • -E3E2Ei]_1. 

If we use the same principle that we used in finding the inverse of a matrix, then we 

can find the product of E*- • -E3E2Ei. But remember, we will perform Gaussian elim- 

ination and not Gauss-Jordan elimination. 

Example IV.29 Given A = 
1 2   3 

-3      2   1 
2 -2   1 

, compute LU such that A = LU. 

Solution: Form a new matrix using A and I and then perform Gaussian elimination: 

1 2   3    |   1   0   0 

-3      2   1    |   0   1   0 

2 -2   1    |   0   0   1 

Replace row2 by 3rowl + row2 and replace row3 by —2rowl + row3. This gives 

1 2 3 | 10 0 

0 8 10 | 3 10 

0-6-51-201 

Replace row3 by |row2 + row3. This gives 

1 2 3 | 

0 8 10 | 

0   0    I   I 

So, we have 

U 

1   2 3 

0   8 10 ,L = 

0   0 5 
2 

1 0 0 

3 1 0 

I 3 j 
4 4 x 

1   0 0 

3   1 0 

1      3 
4      4 1 

-1 

therefore L 

1 

-3 

2 

0 0 

1 0 

■f   1 
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This method for finding L should look familiar. However, don't mistake it for the 

procedure we used for finding the inverse of a matrix. When finding L, we performed 

Gaussian elimination. Then we found the inverse of the product of the elementary 

matrices. This inverse turned out to be L. This seems like more work than is necessary 

because we had to perform Gaussian elimination and then had to find the inverse of 

the matrix. There is a simpler method. Take a close look at L and at the scalar 

row multipliers used in the Gaussian elimination. When we eliminated the a2,i entry, 

we used the scalar 3. Notice that we have a -3 in the Z2,i position of L. When we 

eliminated the o3;i entry, we used the scalar —2. Notice that we have a 2 in the /3>1 

position of L. When we eliminated the a3)2 entry, we used the scalar f. Notice that 

we have a -| in the /3,2 position of L. These are not coincidences. To find the entries 

of L, we take the negative of the scalar row multipliers. 

In the following example we will use the simpler method. 

Example IV.30 Given A = 

1 2 3 1 1 
3 2 1 0 
2 -2 1 0 
1 2 3 4 . 

, compute LU such that A = LU. 

2 3 1 

2 1 0 

2 1 0 

2 3 4 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

Solution: Write A and I. These will become L and U, respectively: 

1 

-3 

2 

1 

Perform Gaussian elimination only on A and insert the negative of the scalar row 

multipliers into I. 

Eliminate a2)X: replace row2 by 3rowl + row2 and insert —3 into /2>i. 

Eliminate a3)i: replace row3 by -2rowl + row3 and insert 2 into /3jl. 

Eliminate aitl: replace row4 by -lrowl + row4 and insert 1 into /4,i. 

After introducing O's below the pivot in column 1, we have 
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1 2 3 

0 8 10 

0 -6 -5 

0 0 0 

1 

3 

-2 

3 

1 0 0 0 

-3 1 0 0 

2 0 1 0 

1 0 0 1 

Eliminate ü3y. replace row3 by |row2 + row3 and insert — | into /3)2; since a4)2 and 

04,3 require no elimination, insert zeros into 1^2 and ^3, obtaining 

1   2 3 1 ■ 1 0 0 0 

0   8 10 3 -3 1 0 0 

0   0 5 
2 

1 
4 2 6 

8 1 0 

0   0 0 3 1 0 0 1 

UL. 

Gaussian elimination is now complete. Notice that, in the example above, we did 

not perform Gaussian elimination on the identity matrix. Instead, we inserted the 

negative of the scalar row multiplier into the identity matrix. If no scalar row mul- 

tiplier was required to eliminate an entry in A, then the corresponding entry in the 

identity matrix was left as zero. It is crucial to remember that we do not perform 

row exchanges. 

G.     BLOCK LU 

The previous LU decomposition method used Gaussian elimination to factor 

the matrix A into the triangular matrices L and U, and works well when solving small 

systems of linear equations analytically. But what happens when our systems become 

too large to feasibly solve by hand? We must find a method that allows computers 

to do the work for us. By factoring A into upper and unit lower triangular matrices, 

we can develop a simple way to solve for x in the equation Ax = b. To see how to 

construct the LU factorization, consider the following block partitioning of the matrix 

equation A = LU, 
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'a   bT~ 
A = 

a     A aa' 

1    0T 

-1     L 

a   hT 

0     Ü 

where L and Ü are lower and upper triangular matrices with smaller dimensions than 

the original A. Provided that LÜ = A - ^abT, we have the factorization we are 

looking for. The equation above is called a Gauss step, and shows how to get the 

first row and column of the LU factorization matrices. Once this is complete, we 

only need to compute the LU factorization of the Schur complement A - -ab . This 

matrix is one row and one column smaller than the matrix we started with. Since 

it is clear that the LU factorization of a 1 x 1 matrix A = [a] is [a] = [1] [a], we 

can build a sequential procedure for finding the factorization. It is much easier to 

show how this algorithm works by showing a simple example. In the next example, 

to avoid confusion, we will use subscripts on A, L, and U. 

Example IV.31 Given A = 
2 6   2 1 
3 -8   0 
4 9   2 

compute LU such that LU = A. 

Solution: Start by factoring A to find the first row and column in L0 and Uo, so that 

A = LoU 0^0 
a   bT 

a   Aa 

1    0T 

aa-1    Li 

a   bT 

0    Ui 

Therefore, 

a 2,a = 

L0Uo = 

-3 |.    i -8   0 y = 6   2 ,A,= 
4 L             ■• 9   2 

1   0     0 2   6     2 

3 
2. 0 

2        Lj 0        Ui 

1~UT Compute the Schur complement A2 = Aa — ^ab  , which gives 

, and 
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Ao   = Ai ab 
a 

-8   0 

T _ -8   0 

9   2 

-9   -3 

1 
~ 2 

-3 

4 

1 

C 

3 

»   2 

9   2 12      4 -3   - -2 

Factor A2 to find the second row and column in Li and Ui, so that 

A2   = 

A2   = 

1      3 

-3   -2 

1   0T 

aoT1    Li 

,a = l,a=[-3],bT = [3], and A3 = [-2], so 

a   bT 

0    Ui 

1       0     0 

"I      1     0 

2 6 2 

0 1 3 

0 0 U2_ 2   -3   L2 

Compute the Schur complement A4 = A3 — -abT so that 

A4 = A3 - -abT = [-2] - [-3] [3] = [7]. 
a 

Factor A4 to find the third row and column in L2 and U2, which gives 

A4   =    [7], a = 7, a = [0], bT = [0], and A5 = [0], so 

a   bT 

a     A 

1   0T 

ace 

a   bT 

0     Ü 

0   0 

1 0 

-3   1 

2 6 2 

0 1 3 

0   0   7 

= LU. 

It turns out, however, that for a general matrix A G Cnxn, it is not always 

possible to find an LU factorization. If you want to prove this to yourself, try factoring 

0 1 

1 1 
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Proceeding in the normal manner, we immediately see that a divide-by-zero problem 

occurs when everything below the first pivot is divided by the pivot. Fortunately, it is 

always possible to find a permutation matrix P such that PA has an LU factorization. 

To begin, find a permutation Pi, and partition the matrix 

a   bT 

a   B 

Choose Pi such that either a ^ 0, or both a — 0 and a = 0. Since the general 

structure of L and  U is known, we partition them as 

PiA 

L = 
1   0T 

v    L 
and U = 

Setting Pi A = LU gives 

a   bT 

a     B 

v   ir 

0     Ü 

uJ 

vv   LU + vuT 

Equating elements and simplifying yields 

V     = a 

V    = 
1 
—a 
a 

T u      = bT 

LÜ   = 
1 

B--ab 
a 

The vector uT can be taken directly from the permuted A, and both L and U come 

from factoring the Schur complement, 

B - -abT. 
a 

Of course, it can also happen that we must apply a permutation to the Schur com- 

plement to get a non-zero pivot. That is, 

LÜ = P2(B--abT), 
a 
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or 

P^LÜ = B - -abT, 
a 

in which case 

PjA = 
1      0T 

a * 

a   bT 

0   Ü 

But this violates the structure of L, since P^L is not unit lower triangular. However, 

we notice that if we let 

0   P2 

then 

P2P1A = P2 

0T 

PlL 

a   bT 

0    Ü 

0T 

P2a   L 

a   bT 

0   Ü 

This is a valid L and U. The reader can verify that the process can be continued until 

we have a complete LU factorization. 

In practice, it is usually considered best to apply a permutation at every stage 

in the process and to choose it so that the pivot is as large as possible. In effect, we 

choose the permutation that puts the largest element of the first column into the first 

row. This strategy is called partial pivoting. Another strategy, full pivoting, utilizes 

both row and column interchanges to put the largest element remaining in the matrix 

into the first row and column. 

H.     PIVOTING 

We see in our derivation of the LU factorization that pivoting may be necessary 

to prevent division by zero. However, the importance of pivoting in a computer 

algorithm goes far beyond avoiding the divide by zero errors. As mentioned previously, 

pivoting is designed to get the largest number in a row or column into the pivot 
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position. Not only is this done to ensure that the pivot is not identically zero, but 

to ensure that the pivot is not very small. Extremely small pivots pose problems for 

two reasons. 

The first reason is direct. If the pivot is very small, meaning much less (in 

magnitude) than 1, and the remaining numbers in the column are large, division by 

the pivot will produce very large numbers. These numbers pose a potential overflow 

problem in the computer. By employing partial pivoting to choose the largest element 

in the column as the pivot, this catastrophe is eliminated and guarantees that all 

remaining numbers in the column are less than one. Thus we can prevent an overflow 

error from occurring. 

The second reason for pivoting is subtle, but far more important. If the pivot 

is small, one might wonder how it got that way. When performing the LU decompo- 

sition, if the first pivot of A is small, it just simply occupies the first pivot position. 

However, the remaining pivots are computed to be small due to the repeated subtrac- 

tion in the Schur complement. Let's see what this really means. Say for example that 

we have two numbers, a = § and b = J^JJ, and that our computer is a rounding 

machine that uses a base 10, 4 digit, floating point system. The computer will approx- 

imate these two numbers as a = .3333 and b = .3330. The rounding errors produced 

by these approximations look innocent enough since the approximations are so close 

to their actual values. But what happens when the machine computes a— ¥1 Well, 

the machine represents this value as .3000 x 10~3, which is quite a bit different from 

the value .3233 x 10~3, the value closest to the true result without initial rounding. 

The phenomenon just shown, known as catastrophic cancellation, occurs when two 

very small numbers that are nearly equal are subtracted. The result leads to a great 

loss in precision. One way to lessen the effect of catastrophic cancellation is to avoid 

subtraction. That is why developers of computer algorithms spend a lot of time find- 

ing ways around the use of subtraction. However, subtraction is not the underlying 

problem, it is rounding that causes the problem of cancellation. One reasonable way 
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to avoid cancellation is to shy away from small numbers that were calculated from 

large numbers by successive subtractions. Such numbers are usually filled with error. 

Therefore, a small pivot is doubly dangerous. First, because it is probably filled with 

error, and second, because dividing by it magnifies the error. That is why it is so 

important to pivot when developing computer algorithms. This applies to solving 

systems of linear equations using both LU decomposition and Gaussian elimination 

algorithms. 

I.      EXERCISES 

1. Determine whether the following equations are linear or nonlinear in the variables 

x, y and z. If nonlinear, state why. 

a) x + y + 1z = sin-K       b) xy -\- z + 2 = 0       c) x2 + y + y/bz = 1 

d) x = y       e)6x — Sy~1=z       f) tan(7r)x-\-e2y = z       g) sin(x)+y — 5z = 0 

2. Given the following systems of linear equations, use the method of substitution to 

compute the solution set. 

x\   +     x2   =   1 3z!    —   3x2   =   2 
a) b) 

—2x\   +   3x2   =   4 6xi   +     x2   =   1 

2x!   —   3x2   —     X3 =     6 

c)      x:   +   6x2   -   2x3 = 12 

—xi   +   4x2   +   6x3 = 24 

3. Given the following system of linear equations, 

99 



xi   +   2x2+     xz   =    3 

2xi   +   Sx2   +   4x3   =    4 

4xi   +   5x2   +   9x3   =   5, 

a) Write the augmented matrix. 

b) Use Gaussian elimination to compute the solution set. 

c) Verify the solution by substituting it back into the system of linear equa- 

tions. 

4. Given the following system of linear equations 

—   2^2    +   3cc3   =       1 

3a;i    +   6x2   —   3^3   =   —2 

6^1   +   6x2   +   3x3   =     5, 

a) Write the augmented matrix. 

b) Use Gaussian elimination to compute the solution set. 

c) Verify the solution by substituting it back into the system of linear equa- 

tions. 

5. Given the following system of linear equations, 

x   —     y   +   2z   —     w   =    — 1 

2x   +     y   -   2z   -   2w   =    -2 

—x   +   2y   —   Az   +     w   =        1 

3a;                              —   3w   —   —3, 

a) Write the augmented matrix. 

b) Use Gaussian elimination to compute the solution set. 
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c) Verify the solution by substituting it back into the system of linear equa- 

tions. 

6. Given the following system of linear equations 

-     x   +   2y   +   Zz   =   0 

w   +     x   +   4y   +   4z   =   7 

w   +   3x   +   7y   +   9z   =   4 

—to   —   2z   —   4y   —   6z   =   6 

a) Write the augmented matrix. 

b) Use Gaussian elimination to compute the solution set. 

c) Verify the solution set by substituting it back into the system of linear 

equations. 

7. Given the following system of linear equations 

£i + x2   +   2x3 =     5 

2xi + 5x2   +   7x3 =   19 

2xi + 4x2   +   6x3 = 16 

a) Write the augmented matrix. 

b) Use Gauss-Jordan elimination to compute the solution set. 

c) Verify the solution set by substituting it back into the system of linear 

equations. 

8. Given the following system of linear equations 

xi   +   2x2+     x3   —     6 

xi   +   2x2   +   2x3   =     7 

2xi    +   4x2   +   2x3   =   15 
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a) Write the augmented matrix. 

b) Use Gauss-Jordan elimination to compute the solution set. 

c) Verify the solution set by substituting it back into the system of linear 

equations. 

9. Given the following system of linear equations 

-xi   +   4x2   +     £3   = =   3 

X\    +   9x2    -   2x3   = =   4 

6x1   +   ix2   —   8x3   = =   5 

a) Write the augmented matrix. 

b) Use Gauss-Jordan elimination to compute the solution set. 

c) Verify the solution set by substituting it back into the system of linear 

equations. 

10 Given the following system of linear equations 

Xi   +   2x2   +     x3   = 61 

2x1   +   Sx2   +   2x3   = h 
4xi    +   5x2   +   8a;3   = h 

a) Write the augmented matrix. 

b) Use Gaussian elimination to compute the solution set. 

c) Can you find a vector b, so that the augmented matrix is inconsistent? 

d) Can you find a non-trivial solution if b = 0? 

11. Given the following system of linear equations 
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xi   —   2x2   —     x3   =   &i 

—4xi    +   5x2    +   2x3   =   62 

4a; i    +    7x2    +   6a;3   =   b3 

a) Write the augmented matrix. 

b) Use Gaussian elimination to compute the solution set. 

c) Can you find a vector b, so that the augmented matrix is inconsistent? 

d) Can you find a non-trivial solution if b = 0? 

12. Given the following system of linear equations 

u + 0 — w + 2x + y + z = — 3 

—3u + v + 0 — 6a; — y — Az = 11 

2u + 5v - 2w + 4x + 22y - 3* = 4 

-u + 2v + 0 + 8x + 27y + 21z = -33 

a) Determine whether the system is consistent or inconsistent. 

b) If the system is consistent, compute the solution set by any method. 

13. Given A = 
3   1 

5   2 

a) Compute A x, if it exists. 

b) Is A singular, or nonsingular? 

14. Given A = 
3   6 

1   2 

a) Compute A 1, if it exists. 
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b) Is A singular, or nonsingular? 

15. Given A = 

1 2 3 

1 1 2 

0   1   2 

a) Compute A a, if it exists. 

b) Is A singular, or nonsingular? 

16. Given A 

1   2 -1 

4   7 -3 

2   1 3 

a) Compute A 1, if it exists. 

b) Is A singular, or nonsingular? 

17. Given A = 

1     6 

-2     3 

7   12 

2 

5 

-4 

a) Calculate A 1, if it exists. 

b) Is A singular, or nonsingular? 

18. Given A = 

1 

3 

-2 

-1 

-3 

-12 

10 

6 

0 

-2 

2 

1 

-2 

-6 

5 

3 
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a) Compute A 1, if it exists. 

b) Is A singular, or nonsingular? 

19. Given A = 

1 0 

-1 1 

2 1 

-1 0 

2 3 

0 4 

-1 3 

5 7 

a) Compute A a, if it exists. 

b) Is A singular, or nonsingular? 

20. Given A 
i     2 

1   -i 

a) Compute A 1, if it exists. 

b) Is A singular, or nonsingular? 

21. Given A 
\-i 0 

0   1+i 

a) Compute A x, if it exists. 

b) Is A singular, or nonsingular? 

22. Given A = 

1 i 0 

-i 0 1 

0   1 + i   1 - t 

a) Compute A 1, if it exists. 
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b) Is A singular, or nonsingular? 

23. Given A 

3 0 0 

0 2 0 

0 0 1 

compute A 1. 

24. Given A = 

4 -2 7 

0 5 1 

0 0 -1 

, compute A 1. 

25. Given A = 

2 0 0 

6 0 0 

4 3 6 

show that A 1 does not exist. 

26. Given upper and lower triangular matrices, show that each is invertible if, and 

only if, its diagonal elements are nonzero. 

27. Given upper triangular matrices A and B, show that AB is also upper triangular. 

28.    Given 01,1,01,2,02,1, and a2,2 G %, such that Oi,i02,2 - 01,202,1 7^ °> compute 

01,1,01,2, 02,1, and 62,2 such that 
Ol,l     Oi,2 

02,1     02,2 

01,1     01,2 

02,1     02,2 

1     0 

0     1 
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29. Given A 

3 

2 

-4 

-6   -3 

0      6 

7      4 

, compute L and U such that A = LU. 

30. Given A 

4 3 2 1 

8 9 6 3 

4 9 8 4 

8 9 10 6 

compute L and U such that A = LU. 

31. Given L = 

1 

-3 

0 0 

1 0 

2   -f   1 4 

,u = 

solution set to LUx = b. 

1 2     3 

0 8   10 

0 o   1_ 
and b compute the 

5xi    +   5x2 + 10^3 = 0 

32.   Given the system of linear equations   — 8xj    —   7x2 — 9x3 = 1 , use LU 

4x2 + 26x3 = 4 
decomposition to compute the solution set. 

—Xi — 3^2 — 4x3 = —6 

33.   Given the system of linear equations       3^ + lOa^ — 10z3 = —3 , use 

-2a?! - 4x2 + llar3 = 9 
LU decomposition to compute the solution set. 
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4xi   —   2x2   +     xz   =   2 

34.   Given the system of linear equations —12a;i    +   3x2 =   5 , use the 

8xi    —     x2   —   2x3   =   6 
Block Partitioning method of LU decomposition to compute the solution set. 
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V.        SOLUTIONS TO EXERCISES 

A.     SOLUTIONS TO CHAPTER I 

la) A? 3   -6   1 lb) BH I-Si   -6   1 + i 

2      0        5* 

lc) C H _ 

2 + 6i   —6 — 4i 1 

7 + 4*   —5 — 6£   3 + * 

2   —6 — 2« 0 

2a) AT = 

2c) CH 

5 + i   7   -2i 

2 -6   14 

-4* -5      i 

22   —3 — 4i   10 

2b) BH = 
1+t       3 

-4   -7i 

3a) A + B -7 

9 

3b) B and D are not compatibly-sized for addition. 

3c)D-C = 

addition. 

3 + 2i   -3 + 4* 

-8 — 2t      2 — 3* 

1+4*      4-6* 

3d) C^ and D are not compatibly-sized for 
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3e) 2A - 3B 

-9 

-9 

-22 

3f) iBH + 2C T _ 
8 + 3«   —4 — 12£      5 + 3« 

6 — 8i     -3 + 2«   -6 + 9« 

4a) A - B 

4c) DH + C H,n _ 

5-«' 

3 

-4 

4b) B and C are not compatibly-sized for addition. 

4-3«   -5-4« 

-2-4«        -14« 

1 +«' 5 

4d) CH- D = 
4 + « 2-1-«' 

11+4«   -14« 5 

4e) A + 2B 

tion. 

5 + 2«' 

21 

26 

4f) DH and CH are not compatibly-sized for subtrac- 

6) AB = 

3     6 -2 

6   12 -5 ^ 

9   18 -8 

6        6        6 

-19   -20   -21 

15      18      21 

= BA    Yes, in general AB ^ BA. 

7a) BA 

1 0 0 

4 8 -2 

1 -4 -4 

7b) BTC = 

7 - 18«'      24 - 13«' 6 

-9 + 2« 7«   -10 + 4« 

-26 + 16«   -26 + 26«   -24 + 8« 
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7c) CHB = 

7 + 18z     -9-2t   -26-16; 

24 + 13i -li   —26 — 26z 

6   —10 — 4»     -24 -Si 

7d) o(BA) 

-a        0        0 

4a      8a   —2a 

a   —4a   —4a 

7e) BA + BC = 

-1 - Ui    16 - 6i 2t 

-4 + 8i    10 + 8i   -14 + 4i 

—5 — 2»   -8 + 4i     -S + 2i 

8a) AB 
15   33   41 

9    24   19 
8b) BAT 

32 28 

16 14 

24 15 

8c) CHB 
3 + 5*'   9 + 16i     5 + 7z 

7 - 2i   14 - 4i   21 - 6i 
8d) a(BC) = 

a(8-24z)   a(16 + 2i) 

a(4-12i)       a(8 + t) 

-13ai     a(17 + i) 

8e) AB and C are not compatibly-sized for addition. 

B.     SOLUTIONS TO CHAPTER II 

la) xH = -1 - 2i   2 + Si   li lb)y T _ -2   3   1 lc)x + y = 

-3 + 2z 

5-3i 

1-7» 
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Id) 3x-2z'y 

If) x + zT = 

-3 + lOi 

6-15i 

—23z 

-li 

6-7z 

le) x and z are not compatibly-sized for addition. 

Ig) 2zH = 

-2i 

A-Si 

12 

lb.) z+z = 0   -4   12 

3a) x • z = 1       3b) x • y = 5 

3c) x(z • y) = 

-19 

-38 

-76 

3d)(yz)x = 

-19 

-38 

-76 

4a) x • z = 39       4b) (x • z)y = 

-78 

117 

39 

4c) x(z • y) 

-155 

62 

31 

4d) (y • z)x 

-155 

62 

31 

6a)32 + 8i       6b) 17-17i       6c) 38 + U       6d) 32 - Si       6e)17 + 17i 

6f) 38 - 5i 
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7a) 

-78 -155 -85 -78 

117 7b) 62 7c) 119 7d) 117 

39 31 0 39 

8a) 

76 + lOi 

109 - 53i 

53 + 109i 

8b) 

102 - 68z 

85 - 17« 8c) 

-51 + 85i 

-176 - 24i 

-32 - 128i 8d) 

96 - 24i 

-76 + lOi 

109 - 53z 

53 + 109i 

9) x • y = 10, not orthogonal       x • z = 0, orthogonal       x • w = 0, orthogonal 

y • z = 2, not orthogonal       y • w = 0, orthogonal       z • w = —14, not orthogonal 

10a) ||x|| = ^/(4)2 + (-2)2 + (2)2 = ^4       10b) \\y\\=y/&2       10c) ||z|| = V3Ö 

lOd) x and y are not orthogonal.        lOe) z and y are not orthogonal. 

lOf) x and z are orthogonal. 

11a) ||x|| = ^/A = y/59      lib) ||y|| = y/lTE      lie) ||z|| = ^23 

lid) x and y are not orthogonal.        lie) z and y are orthogonal, 

llf) x and z are not orthogonal. 

12a) "■x/94       12b) v^96       12c) V^Ö       12d) \/9Ö       12e) w and x, x and y 

13a) wrv = -16       13b) wTw = 54       13c) cos0 16 
Vl4\/54 

8\/21 
63 
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13d) projwv = w 

3 

-5 

-4 

2 

(-M) 

14a) wTv = -33       14b) wTw = 50       14c) cos6 = ^=g^ 

14d) projwv = 

3 

-5 

-4 

0 

(-1) 

i cjr-v    25_-28i 
101J   V^T754 

15b) 18+2J 15c) -16 
VT4\/54 

15d) -31-6i 
•\/43\/54 

15e) 7+hi 
\/l4\/43 

16)x=fu-fw-§v 

17a) v = Ciw4-c2x+c3y       17b) w + x + y = v which is equivalent to setting all of 

the constants in part a equal to 1. Therefore, v is in the span {w,x,y} 

17c) No, they are linearly dependent because v depends on a combination of the 

other 3 vectors. 

18) No, b is not a linear combination of the columns of A because the linear system 

is inconsistent. 
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19) Yes, b is a linear combination of the columns of A because the linear system is 

consistent. 

C.     SOLUTIONS TO CHAPTER III 

1. Check T(x + y) = T(x) + T(y) and T(cx) = cT(x). 

T(x + y)   =   T 
I Xi 

+ y\ )-r{ xi +yi 
\ 

\ . X2. .y2. )   \ X2 + 2/2  _ / 

{xi + yi) - (x2 + 2/2) 

0 

(xi + y\ + x2 + y2f 

xi + yi-x2- 2/2 

0 

x\ + y\ + xj + yj + 2x1y1 + 2xxx2 + 2x2y2 + 2xxy2 + 2yxy2 + 2z22/i 

r(x) + T(y)   =   T 
I 

Xl 
+ T 

1 
2/1 

\ 

\ x2 _ ) V . V2 . J 

Xi — x2 

0 

(a?i + x2y 

+ 
2/1 -2/2 

0 

(2/1 + 2/2)" 

X1+1J1-X2- y2 

0 

xj + y\ + xl + yj + 2xxx2 + 2Vly2 

Therefore, T(x + y) ^ T(x) + T(y). 

/ 
T(cx) = T 

V 

Xl 

x2 

I 
T 

CX\ 

CX2 

CX\ — CX2 

(cxi + cx2) 

CCi — x2 

c(x1 + x2) 
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cT(x) = cT 
I 

Xi 
\ 

= c 

\ x2 ) 

Xi — x2 

(xi + x2f 

T(cx) ^ cT(x). Neither rule holds true, therefore, T is not a linear transformation. 

2) Check T(x + y) =T(x)+T(y) and T(cx) = cT(x). 

r(x + y)   =   T 

r          - \       I r                                -1 
\ 

ZT y^ xi + yi 
+ = T\ = 

X2 .y2. )          V X2 + Wl _ / 

3xi + 3yi 

2x! + 2j/i - x2 - 2/2 

^2 + 2/2 

T(x) + T(y)   =   T 

3xj + 3?/i 

2xi + 2j/i -x2-y2 

x2 + y2 

Therefore, T(x + y) = T(x) + T(y). 

r(cx) = r 

cT{x) = cT 
Xi 

^2 

3(zi + yi) 

2(a;i + yi) - {x2 + y2) 

22 + 2/2 

/ x1 + T 
( 

2/i 
)- 

V x2 _ 1 \ . y2 . ) 

Zx\ 

2xi — x2 

x2 

+ 
3yi 

2yi - 2/2 

2/2 

/ Xi 
\ 

r( 
CX\ \ 

c = T\ = 

\ #2 J \ 
CX2 I 

= c 

3cxi 

2cXx — CX2 

cx2 

3xi 

2Xi — X2 

x2 

3xi 

2xi — x2 

x2 
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T(cx) = cT(x). Both rules hold true, therefore, T is a linear transformation. 

3) Check T(x + y) = T(x) + T(y) and T(cx) = cT(x). 

r(x + y)   =   T 
\ / \ 

Xi 
+ 2/1 

=r 

»i +S/i 

X2 .y2. / ^ ^2 + J/2 / 

«i +2/i 

£i + 2/i + 4(z2 + 2/2) 

(zi + 2/i)(x2 + 2/2) 

«1 + 2/1 

«1 + yi + 4x2 + 4j/2 

xix2 + yix2 + xxy2 + yiy2 

T(x) + T(y)   =   T 

r*              -l 

+ T 
\ 

Xi 2/1 

x2 /         V . ^2 . / 

xi + 4a;2 

XiX2 

+ 
2/1 

2/1 + 4t/2 

yi2/2 

£1 +yi 

»1 + 2/1 + 4z2 + 4y2 

X1X2 + 2/12/2 

Therefore, T(x + y) ^ T(x) + T(y). 

T(cx) = T 
( 

c 

\                I \ 
Xi ).T{ CXi 

- 
\ X2 )       \ cx2 / 

CX\ 

cx\ + 4cx2 

<?X\X2 

= c 

Xi 

Xi + ix2 

CX\X2 

cT(x) = cT 

Xi 

Xi + Ax2 

X\X2 

T(cx) ^ cT(x). Neither rule holds true, therefore, T is not a linear transformation. 

x2 
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4a) HAIIJ = 14       4b) plk = 14       4c) || C ||1= 13 

5a) HAII^ = 13       5b) pl^ = 18       5c) || C ||oo= 10 

6a) elementary matrix (multiplies row2 by —4) 

6b) not an elementary matrix 

6c) elementary matrix (interchanges row2 and row3) 

6d) elementary matrix (replaces rowl by —3row3 + rowl) 

6e) not an elementary matrix 

6f) elementary matrix (multiplies rowl by —2) 

7a) Ei interchanges rows 1 and 3 of a compatibly-sized matrix. E2 replaces rowl of a 

compatibly-sized matrix by (row2 - rowl). E3 multiplies row2 of a compatibly-sized 

matrix by —2. 

7b) E!E2E3 = 

0 0   1 

0 -2   0 

-1 -2   0 

7c) E3E2E! = 

0 1 -1 

0 -2 0 

1 0 0 

7d) No, because matrix multiplication is generally not commutative. 

8a) Independent       8b) Dependent        8c) 4       8d) 4       8e) 4 

9a) rank(A) = 2       9b) x = [4r + 28s + 37* - 13u, 2r + 12s + 16* - 5«, r, s, *, uf 
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D.     SOLUTIONS TO CHAPTER IV 

la) linear       lb) nonlinear (xy)       lc) nonlinear (x2) 

Id) linear       le) nonlinear (3y-1)       If) linear       lg) nonlinear (sin(x)) 

2a) x 
lX 

1      6 
'5      5 

2b) X = _5_ 
21 

2c) x 8   2   4 

3a) 

1 2   1   |   3 

2 3   4   |   4 

4   5   9   |   5 

3b) x = 

-6 

4 

1 

4a) 

0-2 3 | 1 

3 6-3|-2 

0-6      9   1      9 

4b) No solution. System is inconsistent. 

5a) 

1 -1 2 -1 

2 1 -2 -2 

1 2 -4 1 

3 0 0 -3 

1 t-1 

2 

1 
5b) 

2s 

s 

3 t 

where s, t 6 1Z 
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6a) 

0 -1 2 3 

1 1 4 4 

1 3 7 9 

1 -2 -4 -6 

0 82 
13 

7 
6b) 

1 

4 128 
13 

6 85 
13   . 

1 1   2   |     5 

7a)     2   5   7   |   19 

2 4   6   I   16 

7b) 

2-5 

3-5 

5 

where s E1Z. 

1 2   1    |     6 

8a)     1    2   2    |      7 

2 4   2   |    15 

8b) No solution. System is inconsistent. 

-14       1    |    3 

9a)        1    9   -2    |   4 

6   4-815 

9b) 

133 
2 

9 
2 

103 
2 

10a) 

1    2 1 6i 
266,-962+6.1 

4 

2   3 2 &2 10b) 26a - b2 

4   5 8 h —661+62+63 
4 

10c) No       lOd) No 
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11a) 

l-2-l|    &! 

-4      5      2   I   b2 

4      7      8   I   63 

lib) 

-5bi-2fo-3t 
3 

-4b-i-b2-2t 
3 

t 

, where t G 7£ 

lie) 156i + 562 + &3 7^ 0       lid) 6 = 21 
" 3 

, where t G 72. 

12a) The system has an infinite number of solutions and is therefore, consistent. 

12b) -110-585+50«   2 + -29s + t   -9s   «tll^m   s   t , where s,t € 72. 

13a) A"1 = 
2   -1 

-5      3 
13b) Nonsingular 

14a) A"1 = 
3   6 

1   2 
14b) Singular 

15a) A -1 

0      1   -1 

2   -2   -1 

-1      1      1 

15b) Nonsingular 

16a) A -1 

-12 

9 

-5   -I 

16b) Nonsingular 
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17a) A-1 does not exist. 17b) Singular 

18a) A"1 = 

0 

1 

0 

-2 

1 

-1 

1 

2 

0 2 

-2 2 

3 -3 

3 -2 

18b) Nonsingular 

19a) A-1 does not exist.       19b) Singular 

20a) A"1 = 
%      2 

1   -i 
20b) Nonsingular 

21a) A"1 ¥      0 
n     1-» 

21b) Nonsingular 

22a) A"1 = 

l+i 
2 

l+i 
2 

-l-j -l+i 
2 2 

-l+i 
2 

l+i 
2 

-1 
2 

22b) Nonsingular 

23) A -l 

1 
3 0 0 

0 1 
2 0 

0 0 1 
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24) A" -l _ 

1 _2_        33 
4 20        20 

0 1          1 u
 5          5 

0 0-1 

25) Gaussian elimination will produce a row of zeros. 

26) Gaussian elimination will produce a row of zeros. 

28) ai.a&x,! + ai)2&2,i = 1 and a2,i&i,i + a2,2A2,i = 0 —> 62,i = - °'2'1 M 

Substituting 62>i into the first equation yields 

02,2 

ai,iOi,i + ai,2 = 1 
a2,2 

61.1 
02,2 

al,1^2,2 — «2,101,2 

Substituting 614 into b2,\ = — a2'' M yields 
12,2 

&2,1 = 
«2,1 

al,1^2,2 — 02,101,2 

«2,1^1,2 + «2,2^2,2 = 1 and ai,i&ij2 + ai,2fo2)2 = 0 —► &2>2 = —ai'1 1|2 

Substituting 62]2 into the first equation yields 

11,2 

„     A      j_„      ~ai'1&1-2       1 
«2,1 Ol ,2 + «2,2  = 1 " 

01,2 

Substituting 61 )2 into 62,2 = ~ai^ 1'2 yields 

61,2 

Al,2 = 
-02,1 

ai,i&2,2 — a2,iöi,2 

-01,2 

«1,1^2,2 — «2,101,2 

29) L 

1 0     0 
2 
3 1     0 
4 
3 -J     1 

and U 

3 -6 -3 

0 4 8 

0 0 2 
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30) L 

1 0 0 0 

2 1 0 0 

1 2 1 0 

2 1 2 1 

and U = 

4 3 2 1 

0 3 2 1 

0 0 2 1 

0 0 0 1 

31) z = 

1 

4 

2 

and x 

32) L 

1   0   0 5   5 10 

-1   1   0 ,u = 0   1 7 

0   4   1 0   0 -2 

and x = 

-1 

1 

0 

33) L 

1   0   0 

3   1   0 ,u = 
2   2   1 

1 -3 -4 

0 1 -22 

0 0 63 

, and x = 

34) L = 

1 0   0 

3 1   0 ,u = 
2 -1   1 

4 -2 1 55 
12 

0 -3 3 , x = 50 
3 

0 0 -1 -13 
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